--- license: creativeml-openrail-m base_model: kandinsky-community/kandinsky-2-2-decoder datasets: - ChoudharyTAlhaArain/web-kadi-2.0 prior: - kandinsky-community/kandinsky-2-2-prior tags: - kandinsky - text-to-image - diffusers - diffusers-training inference: true --- # Finetuning - ChoudharyTAlhaArain/kadsinky-web-decoder-3.1 This pipeline was finetuned from **kandinsky-community/kandinsky-2-2-decoder** on the **ChoudharyTAlhaArain/web-kadi-2.0** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['update web ui/ux']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = AutoPipelineForText2Image.from_pretrained("ChoudharyTAlhaArain/kadsinky-web-decoder-3.1", torch_dtype=torch.float16) prompt = "update web ui/ux" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 116 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 512 * Mixed-precision: None More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/tanveer-talha-github/text2image-fine-tune/runs/u24l8tl8).