Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -67,7 +67,7 @@ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast
|
|
67 |
|
68 |
# for image chat
|
69 |
image_path = "/PATH/TO/IMAGE"
|
70 |
-
text_prompts = "
|
71 |
image = Image.open(image_path).convert('RGB')
|
72 |
input_dict = {
|
73 |
'image': image,
|
@@ -81,7 +81,7 @@ answer = return_dict["prediction"] # the text format answer
|
|
81 |
|
82 |
# for image chat with segmentation output
|
83 |
image_path = "/PATH/TO/IMAGE"
|
84 |
-
text_prompts = "
|
85 |
image = Image.open(image_path).convert('RGB')
|
86 |
input_dict = {
|
87 |
'image': image,
|
@@ -97,7 +97,7 @@ masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(1,
|
|
97 |
# for chat with visual prompt (mask format) input
|
98 |
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
|
99 |
image_path = "/PATH/TO/IMAGE"
|
100 |
-
text_prompts = "
|
101 |
image = Image.open(image_path).convert('RGB')
|
102 |
input_dict = {
|
103 |
'image': image,
|
@@ -116,7 +116,7 @@ images_paths = [os.path.join(video_folder, image_path) for image_name in images_
|
|
116 |
if len(images_paths) > 5: # uniformly sample 5 frames
|
117 |
step = (len(images_paths) - 1) // (5 - 1)
|
118 |
images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
|
119 |
-
text_prompts = "
|
120 |
input_dict = {
|
121 |
'video': images_paths,
|
122 |
'text': text_prompts,
|
@@ -132,7 +132,7 @@ answer = return_dict["prediction"] # the text format answer
|
|
132 |
video_folder = "/PATH/TO/VIDEO_FOLDER"
|
133 |
images_paths = os.listdir(video_folder)
|
134 |
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
|
135 |
-
text_prompts = "
|
136 |
input_dict = {
|
137 |
'video': images_paths,
|
138 |
'text': text_prompts,
|
|
|
67 |
|
68 |
# for image chat
|
69 |
image_path = "/PATH/TO/IMAGE"
|
70 |
+
text_prompts = "<image>\nPlease describe the image."
|
71 |
image = Image.open(image_path).convert('RGB')
|
72 |
input_dict = {
|
73 |
'image': image,
|
|
|
81 |
|
82 |
# for image chat with segmentation output
|
83 |
image_path = "/PATH/TO/IMAGE"
|
84 |
+
text_prompts = "<image>\nCould you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
|
85 |
image = Image.open(image_path).convert('RGB')
|
86 |
input_dict = {
|
87 |
'image': image,
|
|
|
97 |
# for chat with visual prompt (mask format) input
|
98 |
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
|
99 |
image_path = "/PATH/TO/IMAGE"
|
100 |
+
text_prompts = "<image>\nCan you provide me with a detailed description of the region in the picture marked by region1."
|
101 |
image = Image.open(image_path).convert('RGB')
|
102 |
input_dict = {
|
103 |
'image': image,
|
|
|
116 |
if len(images_paths) > 5: # uniformly sample 5 frames
|
117 |
step = (len(images_paths) - 1) // (5 - 1)
|
118 |
images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
|
119 |
+
text_prompts = "<image>\nPlease describe the video."
|
120 |
input_dict = {
|
121 |
'video': images_paths,
|
122 |
'text': text_prompts,
|
|
|
132 |
video_folder = "/PATH/TO/VIDEO_FOLDER"
|
133 |
images_paths = os.listdir(video_folder)
|
134 |
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
|
135 |
+
text_prompts = "<image>\nPlease segment the person."
|
136 |
input_dict = {
|
137 |
'video': images_paths,
|
138 |
'text': text_prompts,
|