Xiangtai commited on
Commit
f7ccd34
·
verified ·
1 Parent(s): f34d950

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -67,7 +67,7 @@ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast
67
 
68
  # for image chat
69
  image_path = "/PATH/TO/IMAGE"
70
- text_prompts = "Please describe the image."
71
  image = Image.open(image_path).convert('RGB')
72
  input_dict = {
73
  'image': image,
@@ -81,7 +81,7 @@ answer = return_dict["prediction"] # the text format answer
81
 
82
  # for image chat with segmentation output
83
  image_path = "/PATH/TO/IMAGE"
84
- text_prompts = "Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
85
  image = Image.open(image_path).convert('RGB')
86
  input_dict = {
87
  'image': image,
@@ -97,7 +97,7 @@ masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(1,
97
  # for chat with visual prompt (mask format) input
98
  mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
99
  image_path = "/PATH/TO/IMAGE"
100
- text_prompts = "Can you provide me with a detailed description of the region in the picture marked by region1."
101
  image = Image.open(image_path).convert('RGB')
102
  input_dict = {
103
  'image': image,
@@ -116,7 +116,7 @@ images_paths = [os.path.join(video_folder, image_path) for image_name in images_
116
  if len(images_paths) > 5: # uniformly sample 5 frames
117
  step = (len(images_paths) - 1) // (5 - 1)
118
  images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
119
- text_prompts = "Please describe the video."
120
  input_dict = {
121
  'video': images_paths,
122
  'text': text_prompts,
@@ -132,7 +132,7 @@ answer = return_dict["prediction"] # the text format answer
132
  video_folder = "/PATH/TO/VIDEO_FOLDER"
133
  images_paths = os.listdir(video_folder)
134
  images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
135
- text_prompts = "Please segment the person."
136
  input_dict = {
137
  'video': images_paths,
138
  'text': text_prompts,
 
67
 
68
  # for image chat
69
  image_path = "/PATH/TO/IMAGE"
70
+ text_prompts = "<image>\nPlease describe the image."
71
  image = Image.open(image_path).convert('RGB')
72
  input_dict = {
73
  'image': image,
 
81
 
82
  # for image chat with segmentation output
83
  image_path = "/PATH/TO/IMAGE"
84
+ text_prompts = "<image>\nCould you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
85
  image = Image.open(image_path).convert('RGB')
86
  input_dict = {
87
  'image': image,
 
97
  # for chat with visual prompt (mask format) input
98
  mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
99
  image_path = "/PATH/TO/IMAGE"
100
+ text_prompts = "<image>\nCan you provide me with a detailed description of the region in the picture marked by region1."
101
  image = Image.open(image_path).convert('RGB')
102
  input_dict = {
103
  'image': image,
 
116
  if len(images_paths) > 5: # uniformly sample 5 frames
117
  step = (len(images_paths) - 1) // (5 - 1)
118
  images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
119
+ text_prompts = "<image>\nPlease describe the video."
120
  input_dict = {
121
  'video': images_paths,
122
  'text': text_prompts,
 
132
  video_folder = "/PATH/TO/VIDEO_FOLDER"
133
  images_paths = os.listdir(video_folder)
134
  images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
135
+ text_prompts = "<image>\nPlease segment the person."
136
  input_dict = {
137
  'video': images_paths,
138
  'text': text_prompts,