End of training
Browse files
README.md
CHANGED
@@ -23,11 +23,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
-
- Loss: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
-
- F1: 0.
|
30 |
-
- Accuracy: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -47,140 +47,79 @@ More information needed
|
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
- learning_rate: 0.0004
|
50 |
-
- train_batch_size:
|
51 |
-
- eval_batch_size:
|
52 |
- seed: 42
|
53 |
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
55 |
-
- training_steps:
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
-
| 2.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.0592 | 2.0261 | 1240 | 0.0767 | 0.9335 | 0.9510 | 0.9422 | 0.9788 |
|
124 |
-
| 0.0662 | 2.0588 | 1260 | 0.0757 | 0.9310 | 0.9515 | 0.9412 | 0.9793 |
|
125 |
-
| 0.0604 | 2.0915 | 1280 | 0.0765 | 0.9265 | 0.9580 | 0.9420 | 0.9792 |
|
126 |
-
| 0.0435 | 2.1242 | 1300 | 0.0739 | 0.9193 | 0.9552 | 0.9369 | 0.9791 |
|
127 |
-
| 0.0558 | 2.1569 | 1320 | 0.0725 | 0.9367 | 0.9464 | 0.9415 | 0.9801 |
|
128 |
-
| 0.0919 | 2.1895 | 1340 | 0.0790 | 0.9208 | 0.9557 | 0.9379 | 0.9774 |
|
129 |
-
| 0.054 | 2.2222 | 1360 | 0.0784 | 0.9242 | 0.9574 | 0.9405 | 0.9780 |
|
130 |
-
| 0.0595 | 2.2549 | 1380 | 0.0757 | 0.9355 | 0.9570 | 0.9462 | 0.9805 |
|
131 |
-
| 0.0688 | 2.2876 | 1400 | 0.0802 | 0.9214 | 0.9536 | 0.9372 | 0.9772 |
|
132 |
-
| 0.0579 | 2.3203 | 1420 | 0.0788 | 0.9296 | 0.9527 | 0.9410 | 0.9777 |
|
133 |
-
| 0.0536 | 2.3529 | 1440 | 0.0717 | 0.9407 | 0.9510 | 0.9458 | 0.9807 |
|
134 |
-
| 0.0574 | 2.3856 | 1460 | 0.0781 | 0.9309 | 0.9628 | 0.9466 | 0.9800 |
|
135 |
-
| 0.0638 | 2.4183 | 1480 | 0.0751 | 0.9392 | 0.9501 | 0.9446 | 0.9795 |
|
136 |
-
| 0.0865 | 2.4510 | 1500 | 0.0904 | 0.8958 | 0.9484 | 0.9213 | 0.9730 |
|
137 |
-
| 0.0829 | 2.4837 | 1520 | 0.0716 | 0.9394 | 0.9592 | 0.9492 | 0.9813 |
|
138 |
-
| 0.054 | 2.5163 | 1540 | 0.0747 | 0.9397 | 0.9555 | 0.9475 | 0.9808 |
|
139 |
-
| 0.0726 | 2.5490 | 1560 | 0.0754 | 0.9319 | 0.9645 | 0.9479 | 0.9812 |
|
140 |
-
| 0.0702 | 2.5817 | 1580 | 0.0720 | 0.9313 | 0.9598 | 0.9453 | 0.9805 |
|
141 |
-
| 0.0662 | 2.6144 | 1600 | 0.0677 | 0.9392 | 0.9566 | 0.9478 | 0.9814 |
|
142 |
-
| 0.054 | 2.6471 | 1620 | 0.0740 | 0.9367 | 0.9539 | 0.9452 | 0.9798 |
|
143 |
-
| 0.0567 | 2.6797 | 1640 | 0.0717 | 0.9391 | 0.9536 | 0.9463 | 0.9804 |
|
144 |
-
| 0.0623 | 2.7124 | 1660 | 0.0757 | 0.9333 | 0.9587 | 0.9459 | 0.9801 |
|
145 |
-
| 0.0671 | 2.7451 | 1680 | 0.0729 | 0.9270 | 0.9521 | 0.9394 | 0.9797 |
|
146 |
-
| 0.0477 | 2.7778 | 1700 | 0.0783 | 0.9223 | 0.9587 | 0.9401 | 0.9786 |
|
147 |
-
| 0.0675 | 2.8105 | 1720 | 0.0688 | 0.9357 | 0.9616 | 0.9485 | 0.9817 |
|
148 |
-
| 0.0719 | 2.8431 | 1740 | 0.0707 | 0.9348 | 0.9607 | 0.9476 | 0.9807 |
|
149 |
-
| 0.0508 | 2.8758 | 1760 | 0.0724 | 0.9284 | 0.9567 | 0.9423 | 0.9794 |
|
150 |
-
| 0.047 | 2.9085 | 1780 | 0.0746 | 0.9324 | 0.9543 | 0.9432 | 0.9790 |
|
151 |
-
| 0.056 | 2.9412 | 1800 | 0.0700 | 0.9348 | 0.9577 | 0.9461 | 0.9806 |
|
152 |
-
| 0.0597 | 2.9739 | 1820 | 0.0699 | 0.9362 | 0.9612 | 0.9486 | 0.9814 |
|
153 |
-
| 0.0449 | 3.0065 | 1840 | 0.0692 | 0.9377 | 0.9633 | 0.9503 | 0.9824 |
|
154 |
-
| 0.0487 | 3.0392 | 1860 | 0.0748 | 0.9234 | 0.9518 | 0.9373 | 0.9791 |
|
155 |
-
| 0.0384 | 3.0719 | 1880 | 0.0689 | 0.9335 | 0.9591 | 0.9461 | 0.9815 |
|
156 |
-
| 0.0453 | 3.1046 | 1900 | 0.0695 | 0.9370 | 0.9583 | 0.9476 | 0.9813 |
|
157 |
-
| 0.0505 | 3.1373 | 1920 | 0.0782 | 0.9277 | 0.9586 | 0.9429 | 0.9790 |
|
158 |
-
| 0.0439 | 3.1699 | 1940 | 0.0707 | 0.9349 | 0.9619 | 0.9482 | 0.9816 |
|
159 |
-
| 0.0365 | 3.2026 | 1960 | 0.0692 | 0.9354 | 0.9563 | 0.9457 | 0.9815 |
|
160 |
-
| 0.0436 | 3.2353 | 1980 | 0.0733 | 0.9270 | 0.9587 | 0.9426 | 0.9798 |
|
161 |
-
| 0.0447 | 3.2680 | 2000 | 0.0731 | 0.9352 | 0.9589 | 0.9469 | 0.9807 |
|
162 |
-
| 0.0398 | 3.3007 | 2020 | 0.0678 | 0.9432 | 0.9605 | 0.9518 | 0.9829 |
|
163 |
-
| 0.0562 | 3.3333 | 2040 | 0.0720 | 0.9298 | 0.9522 | 0.9409 | 0.9797 |
|
164 |
-
| 0.041 | 3.3660 | 2060 | 0.0653 | 0.9462 | 0.9591 | 0.9526 | 0.9832 |
|
165 |
-
| 0.0463 | 3.3987 | 2080 | 0.0712 | 0.9331 | 0.9656 | 0.9491 | 0.9819 |
|
166 |
-
| 0.0442 | 3.4314 | 2100 | 0.0678 | 0.9407 | 0.9652 | 0.9528 | 0.9833 |
|
167 |
-
| 0.0512 | 3.4641 | 2120 | 0.0707 | 0.9313 | 0.9572 | 0.9440 | 0.9805 |
|
168 |
-
| 0.0442 | 3.4967 | 2140 | 0.0714 | 0.9314 | 0.9585 | 0.9447 | 0.9803 |
|
169 |
-
| 0.0432 | 3.5294 | 2160 | 0.0683 | 0.9351 | 0.9552 | 0.9451 | 0.9813 |
|
170 |
-
| 0.0399 | 3.5621 | 2180 | 0.0694 | 0.9334 | 0.9472 | 0.9402 | 0.9804 |
|
171 |
-
| 0.0426 | 3.5948 | 2200 | 0.0711 | 0.9307 | 0.9534 | 0.9419 | 0.9801 |
|
172 |
-
| 0.0337 | 3.6275 | 2220 | 0.0659 | 0.9418 | 0.9594 | 0.9506 | 0.9827 |
|
173 |
-
| 0.0293 | 3.6601 | 2240 | 0.0658 | 0.9441 | 0.9568 | 0.9504 | 0.9826 |
|
174 |
-
| 0.0473 | 3.6928 | 2260 | 0.0686 | 0.9377 | 0.9555 | 0.9465 | 0.9814 |
|
175 |
-
| 0.0406 | 3.7255 | 2280 | 0.0674 | 0.9392 | 0.9561 | 0.9476 | 0.9821 |
|
176 |
-
| 0.0495 | 3.7582 | 2300 | 0.0692 | 0.9369 | 0.9597 | 0.9481 | 0.9815 |
|
177 |
-
| 0.0366 | 3.7908 | 2320 | 0.0685 | 0.9394 | 0.9603 | 0.9497 | 0.9818 |
|
178 |
-
| 0.0526 | 3.8235 | 2340 | 0.0689 | 0.9380 | 0.9605 | 0.9491 | 0.9818 |
|
179 |
-
| 0.0444 | 3.8562 | 2360 | 0.0691 | 0.9385 | 0.9611 | 0.9497 | 0.9820 |
|
180 |
-
| 0.0447 | 3.8889 | 2380 | 0.0700 | 0.9386 | 0.9618 | 0.9501 | 0.9818 |
|
181 |
-
| 0.0498 | 3.9216 | 2400 | 0.0709 | 0.9363 | 0.9605 | 0.9482 | 0.9812 |
|
182 |
-
| 0.0424 | 3.9542 | 2420 | 0.0703 | 0.9371 | 0.9598 | 0.9483 | 0.9814 |
|
183 |
-
| 0.0518 | 3.9869 | 2440 | 0.0698 | 0.9379 | 0.9598 | 0.9487 | 0.9815 |
|
184 |
|
185 |
|
186 |
### Framework versions
|
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0681
|
27 |
+
- Precision: 0.9324
|
28 |
+
- Recall: 0.9599
|
29 |
+
- F1: 0.9460
|
30 |
+
- Accuracy: 0.9808
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
- learning_rate: 0.0004
|
50 |
+
- train_batch_size: 32
|
51 |
+
- eval_batch_size: 32
|
52 |
- seed: 42
|
53 |
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
54 |
- lr_scheduler_type: linear
|
55 |
+
- training_steps: 1224
|
56 |
- mixed_precision_training: Native AMP
|
57 |
|
58 |
### Training results
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| 2.5288 | 0.0654 | 20 | 1.2145 | 0.0084 | 0.0001 | 0.0002 | 0.7183 |
|
63 |
+
| 0.9544 | 0.1307 | 40 | 0.4841 | 0.7484 | 0.6219 | 0.6793 | 0.8849 |
|
64 |
+
| 0.4878 | 0.1961 | 60 | 0.2727 | 0.8256 | 0.7528 | 0.7875 | 0.9225 |
|
65 |
+
| 0.3072 | 0.2614 | 80 | 0.1840 | 0.8173 | 0.8716 | 0.8436 | 0.9486 |
|
66 |
+
| 0.2213 | 0.3268 | 100 | 0.1585 | 0.8248 | 0.9059 | 0.8634 | 0.9547 |
|
67 |
+
| 0.2246 | 0.3922 | 120 | 0.1568 | 0.8380 | 0.9193 | 0.8768 | 0.9552 |
|
68 |
+
| 0.1715 | 0.4575 | 140 | 0.1099 | 0.9058 | 0.9117 | 0.9087 | 0.9663 |
|
69 |
+
| 0.1591 | 0.5229 | 160 | 0.1138 | 0.8865 | 0.9488 | 0.9166 | 0.9680 |
|
70 |
+
| 0.1514 | 0.5882 | 180 | 0.0932 | 0.9002 | 0.9386 | 0.9190 | 0.9715 |
|
71 |
+
| 0.1216 | 0.6536 | 200 | 0.0903 | 0.9097 | 0.9449 | 0.9270 | 0.9729 |
|
72 |
+
| 0.134 | 0.7190 | 220 | 0.0949 | 0.9129 | 0.9275 | 0.9201 | 0.9715 |
|
73 |
+
| 0.1329 | 0.7843 | 240 | 0.1017 | 0.8967 | 0.9422 | 0.9189 | 0.9706 |
|
74 |
+
| 0.1192 | 0.8497 | 260 | 0.0929 | 0.9097 | 0.9367 | 0.9230 | 0.9723 |
|
75 |
+
| 0.1266 | 0.9150 | 280 | 0.1050 | 0.8881 | 0.9356 | 0.9112 | 0.9691 |
|
76 |
+
| 0.1332 | 0.9804 | 300 | 0.0963 | 0.9078 | 0.9343 | 0.9208 | 0.9716 |
|
77 |
+
| 0.1218 | 1.0458 | 320 | 0.0887 | 0.9104 | 0.9416 | 0.9257 | 0.9730 |
|
78 |
+
| 0.0943 | 1.1111 | 340 | 0.0904 | 0.9119 | 0.9469 | 0.9291 | 0.9733 |
|
79 |
+
| 0.1033 | 1.1765 | 360 | 0.0995 | 0.9035 | 0.9470 | 0.9247 | 0.9706 |
|
80 |
+
| 0.1053 | 1.2418 | 380 | 0.0829 | 0.9197 | 0.9439 | 0.9316 | 0.9766 |
|
81 |
+
| 0.1032 | 1.3072 | 400 | 0.0795 | 0.9150 | 0.9471 | 0.9308 | 0.9759 |
|
82 |
+
| 0.1079 | 1.3725 | 420 | 0.0870 | 0.8990 | 0.9285 | 0.9135 | 0.9715 |
|
83 |
+
| 0.1009 | 1.4379 | 440 | 0.0801 | 0.9250 | 0.9478 | 0.9363 | 0.9771 |
|
84 |
+
| 0.093 | 1.5033 | 460 | 0.0713 | 0.9341 | 0.9459 | 0.9399 | 0.9782 |
|
85 |
+
| 0.0909 | 1.5686 | 480 | 0.0762 | 0.9214 | 0.9556 | 0.9382 | 0.9774 |
|
86 |
+
| 0.0853 | 1.6340 | 500 | 0.0824 | 0.9152 | 0.9483 | 0.9315 | 0.9758 |
|
87 |
+
| 0.1002 | 1.6993 | 520 | 0.0933 | 0.9031 | 0.9539 | 0.9278 | 0.9737 |
|
88 |
+
| 0.0917 | 1.7647 | 540 | 0.0979 | 0.8713 | 0.9204 | 0.8952 | 0.9677 |
|
89 |
+
| 0.127 | 1.8301 | 560 | 0.1236 | 0.9003 | 0.9273 | 0.9136 | 0.9674 |
|
90 |
+
| 0.1221 | 1.8954 | 580 | 0.1022 | 0.9089 | 0.9346 | 0.9216 | 0.9711 |
|
91 |
+
| 0.1039 | 1.9608 | 600 | 0.0946 | 0.9052 | 0.9385 | 0.9215 | 0.9725 |
|
92 |
+
| 0.0873 | 2.0261 | 620 | 0.0914 | 0.9060 | 0.9521 | 0.9285 | 0.9737 |
|
93 |
+
| 0.0736 | 2.0915 | 640 | 0.0765 | 0.9228 | 0.9509 | 0.9366 | 0.9776 |
|
94 |
+
| 0.0584 | 2.1569 | 660 | 0.0795 | 0.9179 | 0.9423 | 0.9300 | 0.9761 |
|
95 |
+
| 0.0858 | 2.2222 | 680 | 0.0764 | 0.9229 | 0.9495 | 0.9360 | 0.9766 |
|
96 |
+
| 0.0849 | 2.2876 | 700 | 0.0797 | 0.9194 | 0.9420 | 0.9305 | 0.9768 |
|
97 |
+
| 0.0626 | 2.3529 | 720 | 0.0729 | 0.9327 | 0.9527 | 0.9426 | 0.9789 |
|
98 |
+
| 0.0725 | 2.4183 | 740 | 0.0747 | 0.9246 | 0.9574 | 0.9407 | 0.9781 |
|
99 |
+
| 0.0914 | 2.4837 | 760 | 0.0796 | 0.9196 | 0.9579 | 0.9383 | 0.9774 |
|
100 |
+
| 0.0676 | 2.5490 | 780 | 0.0762 | 0.9297 | 0.9572 | 0.9432 | 0.9793 |
|
101 |
+
| 0.0724 | 2.6144 | 800 | 0.0710 | 0.9388 | 0.9533 | 0.9460 | 0.9809 |
|
102 |
+
| 0.0635 | 2.6797 | 820 | 0.0757 | 0.9303 | 0.9520 | 0.9410 | 0.9780 |
|
103 |
+
| 0.0729 | 2.7451 | 840 | 0.0724 | 0.9279 | 0.9536 | 0.9406 | 0.9793 |
|
104 |
+
| 0.061 | 2.8105 | 860 | 0.0711 | 0.9278 | 0.9522 | 0.9399 | 0.9793 |
|
105 |
+
| 0.0646 | 2.8758 | 880 | 0.0792 | 0.9207 | 0.9544 | 0.9372 | 0.9767 |
|
106 |
+
| 0.0602 | 2.9412 | 900 | 0.0721 | 0.9246 | 0.9549 | 0.9395 | 0.9785 |
|
107 |
+
| 0.0568 | 3.0065 | 920 | 0.0685 | 0.9333 | 0.9540 | 0.9435 | 0.9804 |
|
108 |
+
| 0.0518 | 3.0719 | 940 | 0.0742 | 0.9239 | 0.9574 | 0.9403 | 0.9789 |
|
109 |
+
| 0.0547 | 3.1373 | 960 | 0.0798 | 0.9209 | 0.9573 | 0.9387 | 0.9778 |
|
110 |
+
| 0.0454 | 3.2026 | 980 | 0.0697 | 0.9366 | 0.9564 | 0.9464 | 0.9810 |
|
111 |
+
| 0.0549 | 3.2680 | 1000 | 0.0753 | 0.9253 | 0.9606 | 0.9426 | 0.9785 |
|
112 |
+
| 0.0534 | 3.3333 | 1020 | 0.0690 | 0.9345 | 0.9574 | 0.9458 | 0.9808 |
|
113 |
+
| 0.0527 | 3.3987 | 1040 | 0.0681 | 0.9297 | 0.9604 | 0.9448 | 0.9801 |
|
114 |
+
| 0.057 | 3.4641 | 1060 | 0.0672 | 0.9346 | 0.9585 | 0.9464 | 0.9812 |
|
115 |
+
| 0.0482 | 3.5294 | 1080 | 0.0705 | 0.9268 | 0.9569 | 0.9416 | 0.9801 |
|
116 |
+
| 0.0482 | 3.5948 | 1100 | 0.0689 | 0.9304 | 0.9566 | 0.9433 | 0.9804 |
|
117 |
+
| 0.0412 | 3.6601 | 1120 | 0.0670 | 0.9345 | 0.9609 | 0.9475 | 0.9815 |
|
118 |
+
| 0.0565 | 3.7255 | 1140 | 0.0676 | 0.9334 | 0.9603 | 0.9467 | 0.9810 |
|
119 |
+
| 0.0509 | 3.7908 | 1160 | 0.0672 | 0.9347 | 0.9615 | 0.9479 | 0.9814 |
|
120 |
+
| 0.0566 | 3.8562 | 1180 | 0.0684 | 0.9316 | 0.9601 | 0.9457 | 0.9806 |
|
121 |
+
| 0.0602 | 3.9216 | 1200 | 0.0690 | 0.9317 | 0.9601 | 0.9457 | 0.9805 |
|
122 |
+
| 0.0585 | 3.9869 | 1220 | 0.0681 | 0.9324 | 0.9599 | 0.9460 | 0.9808 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
### Framework versions
|