--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_keras_callback model-index: - name: turkishElectrick-mini-model results: [] --- # turkishElectrick-mini-model This model is a fine-tuned version of [gpt2](https://huggingface.co./gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6456 - Validation Loss: 1.7437 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -981, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.8609 | 7.6497 | 0 | | 7.4033 | 6.9102 | 1 | | 6.7940 | 6.4910 | 2 | | 6.4110 | 6.1667 | 3 | | 6.1566 | 5.9352 | 4 | | 5.9535 | 5.7224 | 5 | | 5.7576 | 5.5135 | 6 | | 5.5523 | 5.2730 | 7 | | 5.3273 | 5.0157 | 8 | | 5.0893 | 4.7472 | 9 | | 4.8421 | 4.4614 | 10 | | 4.5883 | 4.1934 | 11 | | 4.3480 | 3.9637 | 12 | | 4.1266 | 3.7447 | 13 | | 3.9195 | 3.5359 | 14 | | 3.7044 | 3.3124 | 15 | | 3.5097 | 3.1111 | 16 | | 3.3371 | 2.9532 | 17 | | 3.1614 | 2.7941 | 18 | | 3.0044 | 2.6662 | 19 | | 2.8511 | 2.5749 | 20 | | 2.7244 | 2.4281 | 21 | | 2.5806 | 2.3450 | 22 | | 2.4819 | 2.2632 | 23 | | 2.3593 | 2.1921 | 24 | | 2.2577 | 2.1169 | 25 | | 2.1563 | 2.0540 | 26 | | 2.0613 | 2.0063 | 27 | | 1.9667 | 1.9627 | 28 | | 1.8827 | 1.9393 | 29 | | 1.8151 | 1.8864 | 30 | | 1.7214 | 1.8717 | 31 | | 1.6412 | 1.8502 | 32 | | 1.5774 | 1.7942 | 33 | | 1.5114 | 1.7909 | 34 | | 1.4588 | 1.7749 | 35 | | 1.4006 | 1.7770 | 36 | | 1.3340 | 1.7404 | 37 | | 1.2674 | 1.7468 | 38 | | 1.2138 | 1.7298 | 39 | | 1.1611 | 1.7218 | 40 | | 1.1231 | 1.7275 | 41 | | 1.0758 | 1.7187 | 42 | | 1.0199 | 1.7249 | 43 | | 0.9813 | 1.6946 | 44 | | 0.9286 | 1.7022 | 45 | | 0.8793 | 1.7378 | 46 | | 0.8404 | 1.6809 | 47 | | 0.8028 | 1.7204 | 48 | | 0.7706 | 1.7212 | 49 | | 0.7406 | 1.7010 | 50 | | 0.6994 | 1.7265 | 51 | | 0.6785 | 1.7437 | 52 | | 0.6438 | 1.7437 | 53 | | 0.6456 | 1.7437 | 54 | | 0.6406 | 1.7437 | 55 | | 0.6422 | 1.7437 | 56 | | 0.6453 | 1.7437 | 57 | | 0.6428 | 1.7437 | 58 | | 0.6454 | 1.7437 | 59 | | 0.6477 | 1.7437 | 60 | | 0.6438 | 1.7437 | 61 | | 0.6477 | 1.7437 | 62 | | 0.6462 | 1.7437 | 63 | | 0.6461 | 1.7437 | 64 | | 0.6469 | 1.7437 | 65 | | 0.6448 | 1.7437 | 66 | | 0.6450 | 1.7437 | 67 | | 0.6469 | 1.7437 | 68 | | 0.6407 | 1.7437 | 69 | | 0.6492 | 1.7437 | 70 | | 0.6410 | 1.7437 | 71 | | 0.6445 | 1.7437 | 72 | | 0.6385 | 1.7437 | 73 | | 0.6413 | 1.7437 | 74 | | 0.6397 | 1.7437 | 75 | | 0.6456 | 1.7437 | 76 | | 0.6403 | 1.7437 | 77 | | 0.6439 | 1.7437 | 78 | | 0.6398 | 1.7437 | 79 | | 0.6415 | 1.7437 | 80 | | 0.6431 | 1.7437 | 81 | | 0.6421 | 1.7437 | 82 | | 0.6423 | 1.7437 | 83 | | 0.6454 | 1.7437 | 84 | | 0.6406 | 1.7437 | 85 | | 0.6440 | 1.7437 | 86 | | 0.6423 | 1.7437 | 87 | | 0.6431 | 1.7437 | 88 | | 0.6448 | 1.7437 | 89 | | 0.6436 | 1.7437 | 90 | | 0.6362 | 1.7437 | 91 | | 0.6445 | 1.7437 | 92 | | 0.6407 | 1.7437 | 93 | | 0.6410 | 1.7437 | 94 | | 0.6431 | 1.7437 | 95 | | 0.6434 | 1.7437 | 96 | | 0.6415 | 1.7437 | 97 | | 0.6438 | 1.7437 | 98 | | 0.6456 | 1.7437 | 99 | ### Framework versions - Transformers 4.44.2 - TensorFlow 2.17.0 - Datasets 3.0.0 - Tokenizers 0.19.1