BeardedMonster
commited on
Commit
•
93fd473
1
Parent(s):
4f4f5b6
Upload GPTJXForCausalLM
Browse files- pretrained_model.py +144 -47
pretrained_model.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from transformers import AutoConfig, PreTrainedModel, AutoModelForCausalLM
|
2 |
from typing import List, Optional
|
3 |
from torch import nn
|
4 |
-
from model import LayerNorm, BlockJ
|
5 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
6 |
import torch
|
7 |
import math
|
@@ -10,6 +10,103 @@ from transformers import AutoConfig, AutoModel
|
|
10 |
from .pretrained_config import *
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
class GPTJXForCausalLM(PreTrainedModel):
|
15 |
config_class = GPTJXConfig
|
@@ -117,36 +214,36 @@ class GPTJXForCausalLM(PreTrainedModel):
|
|
117 |
return model_inputs
|
118 |
|
119 |
|
120 |
-
@torch.no_grad()
|
121 |
-
def stream(self, idx, max_new_tokens, temperature=1.0, top_k=None,gen_mode="greedy"):
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
|
151 |
|
152 |
def crop_block_size(self, block_size):
|
@@ -166,23 +263,23 @@ AutoModel.register(GPTJXConfig,GPTJXForCausalLM)
|
|
166 |
AutoModelForCausalLM.register(GPTJXConfig, GPTJXForCausalLM)
|
167 |
|
168 |
|
169 |
-
if __name__ == '__main__':
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
# print(new_config)
|
|
|
1 |
from transformers import AutoConfig, PreTrainedModel, AutoModelForCausalLM
|
2 |
from typing import List, Optional
|
3 |
from torch import nn
|
4 |
+
# from model import LayerNorm, BlockJ
|
5 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
6 |
import torch
|
7 |
import math
|
|
|
10 |
from .pretrained_config import *
|
11 |
|
12 |
|
13 |
+
|
14 |
+
class LayerNorm(nn.Module):
|
15 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
16 |
+
|
17 |
+
def __init__(self, ndim, bias):
|
18 |
+
super().__init__()
|
19 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
20 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
21 |
+
|
22 |
+
def forward(self, input):
|
23 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
24 |
+
|
25 |
+
class CausalSelfAttention(nn.Module):
|
26 |
+
|
27 |
+
def __init__(self, config):
|
28 |
+
super().__init__()
|
29 |
+
assert config.n_embd % config.n_head == 0
|
30 |
+
# key, query, value projections for all heads, but in a batch
|
31 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
32 |
+
# output projection
|
33 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
34 |
+
# regularization
|
35 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
36 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
37 |
+
self.n_head = config.n_head
|
38 |
+
self.n_embd = config.n_embd
|
39 |
+
self.dropout = config.dropout
|
40 |
+
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
|
41 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
42 |
+
# if not self.flash:
|
43 |
+
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
44 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
45 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
46 |
+
.view(1, 1, config.block_size, config.block_size))
|
47 |
+
|
48 |
+
def forward(self, x, attn_mask=None):
|
49 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
50 |
+
|
51 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
52 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
53 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
54 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
55 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
56 |
+
|
57 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
58 |
+
if self.flash:
|
59 |
+
if attn_mask is not None:
|
60 |
+
# efficient attention using Flash Attention CUDA kernels
|
61 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=self.dropout if self.training else 0)
|
62 |
+
else:
|
63 |
+
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
|
64 |
+
else:
|
65 |
+
# manual implementation of attention
|
66 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
67 |
+
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
68 |
+
att = F.softmax(att, dim=-1)
|
69 |
+
att = self.attn_dropout(att)
|
70 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
71 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
72 |
+
|
73 |
+
# output projection
|
74 |
+
y = self.resid_dropout(self.c_proj(y))
|
75 |
+
return y
|
76 |
+
|
77 |
+
class MLP(nn.Module):
|
78 |
+
|
79 |
+
def __init__(self, config):
|
80 |
+
super().__init__()
|
81 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
82 |
+
self.gelu = nn.GELU()
|
83 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
84 |
+
self.dropout = nn.Dropout(config.dropout)
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
x = self.c_fc(x)
|
88 |
+
x = self.gelu(x)
|
89 |
+
x = self.c_proj(x)
|
90 |
+
x = self.dropout(x)
|
91 |
+
return x
|
92 |
+
|
93 |
+
class BlockJ(nn.Module):
|
94 |
+
|
95 |
+
def __init__(self, config):
|
96 |
+
super().__init__()
|
97 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
98 |
+
self.j = LayerNorm(config.n_embd, config.n_embd)
|
99 |
+
self.attn = CausalSelfAttention(config)
|
100 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
101 |
+
self.mlp = MLP(config)
|
102 |
+
|
103 |
+
def forward(self, x, attn_mask=None):
|
104 |
+
h = x
|
105 |
+
x = self.ln_1(x)
|
106 |
+
x = h + self.attn(x, attn_mask) + self.j(x)
|
107 |
+
x = x + self.mlp(self.ln_2(x))
|
108 |
+
return x
|
109 |
+
|
110 |
|
111 |
class GPTJXForCausalLM(PreTrainedModel):
|
112 |
config_class = GPTJXConfig
|
|
|
214 |
return model_inputs
|
215 |
|
216 |
|
217 |
+
# @torch.no_grad()
|
218 |
+
# def stream(self, idx, max_new_tokens, temperature=1.0, top_k=None,gen_mode="greedy"):
|
219 |
+
# """
|
220 |
+
# Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
221 |
+
# the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
222 |
+
# Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
223 |
+
# """
|
224 |
+
# for _ in range(max_new_tokens):
|
225 |
+
# # if the sequence context is growing too long we must crop it at block_size
|
226 |
+
# idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
227 |
+
# # forward the model to get the logits for the index in the sequence
|
228 |
+
# logits, _ = self(idx_cond, eval=True)
|
229 |
+
# # pluck the logits at the final step and scale by desired temperature
|
230 |
+
# logits = logits[:, -1, :] / temperature
|
231 |
+
# # optionally crop the logits to only the top k options
|
232 |
+
# if top_k is not None:
|
233 |
+
# v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
234 |
+
# logits[logits < v[:, [-1]]] = -float('Inf')
|
235 |
+
# # apply softmax to convert logits to (normalized) probabilities
|
236 |
+
# probs = F.softmax(logits, dim=-1)
|
237 |
+
# # sample from the distribution
|
238 |
+
# if gen_mode == 'greedy':
|
239 |
+
# idx_next = torch.argmax(probs, dim=-1).unsqueeze(0)
|
240 |
|
241 |
+
# else:
|
242 |
+
# idx_next = torch.multinomial(probs, num_samples=1)
|
243 |
+
# # print(idx_next.shape, idx.shape)
|
244 |
+
# idx = torch.cat((idx, idx_next), dim=1)
|
245 |
+
# # append sampled index to the running sequence and continue
|
246 |
+
# yield idx_next
|
247 |
|
248 |
|
249 |
def crop_block_size(self, block_size):
|
|
|
263 |
AutoModelForCausalLM.register(GPTJXConfig, GPTJXForCausalLM)
|
264 |
|
265 |
|
266 |
+
# if __name__ == '__main__':
|
267 |
+
# from transformers import AutoTokenizer
|
268 |
|
269 |
+
# tokenizer = AutoTokenizer.from_pretrained("BeardedMonster/SabiYarn")
|
270 |
+
# input_ids = tokenizer("Awọn eeyan Cairo, ni Egypt ti bẹrẹ si n to lawọn ileesẹ to n ṣe burẹdi bayii.", return_tensors="pt")["input_ids"]
|
271 |
+
# targets = input_ids
|
272 |
|
273 |
+
# # config = GPTJConfig()
|
274 |
+
# # config.save_pretrained("gptj-config")
|
275 |
+
# # new_config = GPTJ.from_pretrained("gptj-config")
|
276 |
+
# # model = GPTJ(config)
|
277 |
+
# # state_dict = torch.load('model.pt', map_location="cpu")
|
278 |
+
# # model.load_state_dict(state_dict)
|
279 |
+
# model = GPTJXForCausalLM.from_pretrained("/pretrainedmodel")
|
280 |
+
# # model.save_pretrained("/pretrainedmodel")
|
281 |
+
# # outputs = model(input_ids, targets)
|
282 |
+
# # print(outputs)
|
283 |
+
# output = model.generate(input_ids, max_new_tokens=50)
|
284 |
+
# print(tokenizer.decode(output[0]))
|
285 |
# print(new_config)
|