File size: 4,782 Bytes
57dbea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: Llama-2-7b-spin-rephrased-10k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-2-7b-spin-rephrased-10k

This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co./meta-llama/Llama-2-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1071
- Rewards/real: 10.2171
- Rewards/generated: -7.6243
- Rewards/accuracies: 1.0
- Rewards/margins: 17.8413
- Logps/generated: -358.9117
- Logps/real: -104.6875
- Logits/generated: -0.8781
- Logits/real: -1.4494

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
|:-------------:|:------:|:----:|:---------------:|:------------:|:-----------------:|:------------------:|:---------------:|:---------------:|:----------:|:----------------:|:-----------:|
| 0.1687        | 0.1984 | 62   | 0.1554          | 5.2053       | -5.2548           | 1.0                | 10.4601         | -335.2168       | -154.8048  | -0.7218          | -0.4019     |
| 0.1204        | 0.3968 | 124  | 0.1153          | 9.3697       | -4.5235           | 1.0                | 13.8932         | -327.9041       | -113.1613  | -0.8262          | -1.1627     |
| 0.1114        | 0.5952 | 186  | 0.1125          | 9.6740       | -5.3166           | 1.0                | 14.9906         | -335.8354       | -110.1185  | -0.8446          | -1.2393     |
| 0.1094        | 0.7936 | 248  | 0.1110          | 9.8335       | -5.4853           | 1.0                | 15.3188         | -337.5219       | -108.5231  | -0.8538          | -1.2560     |
| 0.1115        | 0.992  | 310  | 0.1100          | 9.9127       | -6.4827           | 1.0                | 16.3954         | -347.4966       | -107.7317  | -0.8658          | -1.3304     |
| 0.1046        | 1.1904 | 372  | 0.1093          | 9.9819       | -6.6707           | 1.0                | 16.6526         | -349.3765       | -107.0395  | -0.8656          | -1.3633     |
| 0.1067        | 1.3888 | 434  | 0.1089          | 10.0127      | -7.5740           | 1.0                | 17.5868         | -358.4094       | -106.7308  | -0.8814          | -1.3898     |
| 0.1038        | 1.5872 | 496  | 0.1083          | 10.0730      | -7.0038           | 1.0                | 17.0768         | -352.7069       | -106.1281  | -0.8755          | -1.3615     |
| 0.0996        | 1.7856 | 558  | 0.1079          | 10.1219      | -7.0176           | 1.0                | 17.1396         | -352.8456       | -105.6391  | -0.8467          | -1.3431     |
| 0.1058        | 1.984  | 620  | 0.1077          | 10.1479      | -7.4808           | 1.0                | 17.6287         | -357.4770       | -105.3797  | -0.8821          | -1.4055     |
| 0.0995        | 2.1824 | 682  | 0.1074          | 10.1669      | -7.1947           | 1.0                | 17.3617         | -354.6166       | -105.1890  | -0.8781          | -1.4102     |
| 0.1017        | 2.3808 | 744  | 0.1073          | 10.1849      | -7.6243           | 1.0                | 17.8092         | -358.9117       | -105.0093  | -0.8806          | -1.4228     |
| 0.1031        | 2.5792 | 806  | 0.1072          | 10.2106      | -7.6581           | 1.0                | 17.8687         | -359.2500       | -104.7519  | -0.8787          | -1.4391     |
| 0.1025        | 2.7776 | 868  | 0.1071          | 10.2105      | -7.6804           | 1.0                | 17.8909         | -359.4730       | -104.7534  | -0.8824          | -1.4506     |
| 0.1067        | 2.976  | 930  | 0.1071          | 10.2171      | -7.6243           | 1.0                | 17.8413         | -358.9117       | -104.6875  | -0.8781          | -1.4494     |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1