AmberYifan commited on
Commit
fb022d9
·
verified ·
1 Parent(s): 6748db5

Model save

Browse files
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: AmberYifan/llama2-7b-sft-ultrachat-safeRLHF
3
+ library_name: transformers
4
+ model_name: Llama-2-7b-sft-SPIN-length-70-10k
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - dpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Llama-2-7b-sft-SPIN-length-70-10k
13
+
14
+ This model is a fine-tuned version of [AmberYifan/llama2-7b-sft-ultrachat-safeRLHF](https://huggingface.co/AmberYifan/llama2-7b-sft-ultrachat-safeRLHF).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="AmberYifan/Llama-2-7b-sft-SPIN-length-70-10k", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yifanwang/huggingface/runs/njlebls7)
31
+
32
+ This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.12.2
37
+ - Transformers: 4.46.3
38
+ - Pytorch: 2.6.0
39
+ - Datasets: 3.3.0
40
+ - Tokenizers: 0.20.3
41
+
42
+ ## Citations
43
+
44
+ Cite DPO as:
45
+
46
+ ```bibtex
47
+ @inproceedings{rafailov2023direct,
48
+ title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
49
+ author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
50
+ year = 2023,
51
+ booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
52
+ url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
53
+ editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
54
+ }
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 0.0,
4
+ "train_loss": 0.018431058258183003,
5
+ "train_runtime": 15031.6783,
6
+ "train_samples": 10000,
7
+ "train_samples_per_second": 1.996,
8
+ "train_steps_per_second": 0.499
9
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 0.0,
4
+ "train_loss": 0.018431058258183003,
5
+ "train_runtime": 15031.6783,
6
+ "train_samples": 10000,
7
+ "train_samples_per_second": 1.996,
8
+ "train_steps_per_second": 0.499
9
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff