Alexander Chernyavskiy
commited on
Commit
·
2c2c512
1
Parent(s):
d108f27
Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 956.65 +/- 232.89
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaa0509c870a498904a90393859ad7a61615dc9320bb392bbdaf84de0ac5c6f4
|
3 |
+
size 129189
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe70940cf80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe70940f050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe70940f0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe70940f170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe70940f200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe70940f290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe70940f320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe70940f3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe70940f440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe70940f4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe70940f560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe7094616c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658869329.4487984,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAjkIdP2dSF7/q4CA+JnWnvg4xab9VZSw/6s2fv4B5Bb84iAW/xwSSP07tTj4TuEW+XOtLP2vFTj+z9Dg/FOkIPIRHmb3D81o+WaJ3v+PVa75aNZA/SBwCPyXuW79reYK8IgsHP0jfvj48HAE/3j6NvyiZ4L4pV4S/ovIAv7khFUBM5qK/eZFfwJAtJT6GywU9b4GaPw4RjT9JL4u+QkalP8lh0j62MBE/G7WDPtaxpr+Gza+/OQlXOy74zz612JQ/5VtkvqCSdL/4vRK/8U10vSILBz9I374+PBwBP94+jb9zp/I+XAJLPlabLj/DCAQ//HlTPhaeTb+bNSu+7pyzvk8Xij/+RPC+jByHPTJ03T9jXgy/sY3rPbRTwD3fTl89Tgaov1D4DD0NDEk+Qso8QPeiYr/1QFS/BainPlMyl7/SpfK/SN++PmrM/b/ePo2/3e4bP8RGIr/zE+Q96l3DP/jNxb9QXw7AQzjVvlosOL7ezn8/AkWiP0ASx7xsnMG+PirvPnbTsT9fz+M9/FtCv55OrL96GxE/5/FUvgFkQz/L6ri+BT/1Ps13Mb+zVTM/IgsHP0jfvj48HAE/3j6Nv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAL8IWzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDiMce9AAAAAD3A/r8AAAAADHLEPQAAAADe4Pw/AAAAAAP5XTwAAAAA1ifnPwAAAAB8UZU9AAAAAGxq8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbUq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdE0KPgAAAAD3wuu/AAAAAPtvCz4AAAAAzVvjPwAAAAAR9F09AAAAAGFH7j8AAAAAPQ7FPQAAAAAfR/m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXVTxtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFqkoz0AAAAAWhv0vwAAAACMw7K9AAAAADoK/T8AAAAAgzFKPQAAAAAPZvc/AAAAACLTFL0AAAAAmU7lvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFoGjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBw00C9AAAAAI6s878AAAAAdOvcPQAAAACyKuA/AAAAAMKf+D0AAAAAV9/cPwAAAABG6wG+AAAAAIBV4L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJLk7vVmSQqMAWyUTegDjAF0lEdAp9+5gG8mKXV9lChoBkdAkn00XLvCuWgHTegDaAhHQKfirgl4TsZ1fZQoaAZHQJHlQWN3np1oB03oA2gIR0Cn5DjTjNpudX2UKGgGR0CWN5PJq7AdaAdN6ANoCEdAp+fTGkvboXV9lChoBkdAlQ8zM3ZPEmgHTegDaAhHQKfr3KB/Zuh1fZQoaAZHQJLqgj+rELpoB03oA2gIR0Cn75tsenyedX2UKGgGR0CRD7FZxJd0aAdN6ANoCEdAp/GnMINVinV9lChoBkdAkw6YgNgBtGgHTegDaAhHQKf1PBpHqeN1fZQoaAZHQJUgZ49ovi9oB03oA2gIR0Cn+U9g4OtodX2UKGgGR0CTD7PQv6CUaAdN6ANoCEdAp/xBsGgSOHV9lChoBkdAlEOtbPhQ32gHTegDaAhHQKf9x2TPjXF1fZQoaAZHQJNl99iMHbBoB03oA2gIR0CoAWIlUp/gdX2UKGgGR0CRbJx8lXzUaAdN6ANoCEdAqAVxz1bqyHV9lChoBkdAkLGgOSW7e2gHTegDaAhHQKgIYQxvegt1fZQoaAZHQI5PoZ2pyZNoB03oA2gIR0CoCdqDTSb6dX2UKGgGR0CTAHOxjawmaAdN6ANoCEdAqA1i+tbLU3V9lChoBkdAkM5Eo8ZDRmgHTegDaAhHQKgRcA0bcXZ1fZQoaAZHQJKkV75VOsVoB03oA2gIR0CoFGAh0QsgdX2UKGgGR0CTO8AZsKsuaAdN6ANoCEdAqBXiOvMbFXV9lChoBkdAkxITj7yhBmgHTegDaAhHQKgZbrqMWGh1fZQoaAZHQJQWfGipNsZoB03oA2gIR0CoHYnRsuWbdX2UKGgGR0CSfSqn3ta7aAdN6ANoCEdAqCCGO801qHV9lChoBkdAk9o5FgDzRWgHTegDaAhHQKgiA0+C9RJ1fZQoaAZHQJNsH1DjR2NoB03oA2gIR0CoJaNknTiLdX2UKGgGR0CUZfVx0dR0aAdN6ANoCEdAqCmvhGYrrnV9lChoBkdAkg7Ex20Re2gHTegDaAhHQKgspPJJXhh1fZQoaAZHQJHT4nKGL1poB03oA2gIR0CoLiyQ5myxdX2UKGgGR0CS0reRxLkCaAdN6ANoCEdAqDHLqt5lfHV9lChoBkdAkzdD4593KWgHTegDaAhHQKg12HrQgLZ1fZQoaAZHQI2kEpVjqfRoB03oA2gIR0CoONXuVopQdX2UKGgGR0CE/9I5o4+9aAdN6ANoCEdAqDptpoK2KHV9lChoBkdAj2iu3lS0jWgHTegDaAhHQKg+C5bQkX11fZQoaAZHQJAF1aaCtihoB03oA2gIR0CoQi/Aj6eodX2UKGgGR0CQ0KfjCHh1aAdN6ANoCEdAqEUuS2Yv4HV9lChoBkdAjkcYV6/qPmgHTegDaAhHQKhGpxRVIZt1fZQoaAZHQJCnUyvcJt1oB03oA2gIR0CoSioXbdrPdX2UKGgGR0CNlNM9KVY7aAdN6ANoCEdAqE45qASWaHV9lChoBkdAjPRDbzshPmgHTegDaAhHQKhRJzjFQ2x1fZQoaAZHQJCH+WpqASZoB03oA2gIR0CoUqQBHTZydX2UKGgGR0COlxw7T2FnaAdN6ANoCEdAqFY4EOiFkHV9lChoBkdAkX8Tw6QvH2gHTegDaAhHQKhaTSofjjt1fZQoaAZHQJFgkzi0fHRoB03oA2gIR0CoXVnskY4ydX2UKGgGR0CSsHhLXcxkaAdN6ANoCEdAqF7qn752yXV9lChoBkdAkibP3i704GgHTegDaAhHQKhic/nGKht1fZQoaAZHQJSTiN1hb4doB03oA2gIR0CoZpoEjgQ6dX2UKGgGR0CSt9ck+otMaAdN6ANoCEdAqGmgF5fMOnV9lChoBkdAk1NAG0NSZWgHTegDaAhHQKhrIeCCjDd1fZQoaAZHQJWnJSCOFQFoB03oA2gIR0CobrTT4L1FdX2UKGgGR0CVHqdMTN+taAdN6ANoCEdAqHLbgVGkOHV9lChoBkdAmBOxlpXZG2gHTegDaAhHQKh12FW4mTl1fZQoaAZHQJJjTFtKqXFoB03oA2gIR0Cod1gjhUBGdX2UKGgGR0CTkAO9WZJDaAdN6ANoCEdAqHraLn9vTHV9lChoBkdAkrxwbuMMqmgHTegDaAhHQKh+8jOcDr91fZQoaAZHQJSKgzi0fHRoB03oA2gIR0CogeD6nBLxdX2UKGgGR0CR/aZR8+ibaAdN6ANoCEdAqINazZ6D5HV9lChoBkdAlSkMBU70WmgHTegDaAhHQKiG7dGAkLR1fZQoaAZHQJEVcnRb8m9oB03oA2gIR0CoivfUnXumdX2UKGgGR0CJerofSx7iaAdN6ANoCEdAqI3wBNmDlHV9lChoBkdAkfVuhXbM5mgHTegDaAhHQKiPcvYe1a51fZQoaAZHQJUqHGZNO/NoB03oA2gIR0Cokv1cUucudX2UKGgGR0CTA0cophF3aAdN6ANoCEdAqJcGOU+s5nV9lChoBkdAlDN2GIsRQWgHTegDaAhHQKiaEsS00Fd1fZQoaAZHQJPdxxLkCFNoB03oA2gIR0Com5JosZpBdX2UKGgGR0CTDNsEq2BraAdN6ANoCEdAqJ8SVyFPBXV9lChoBkdAk+rNZA6dUmgHTegDaAhHQKijGgfU4Jh1fZQoaAZHQJE9VhBqsU9oB03oA2gIR0CophOrhisodX2UKGgGR0CTiM96kZaWaAdN6ANoCEdAqKeSuEEkjXV9lChoBkdAkmdIEr5IpmgHTegDaAhHQKirqFRHf/F1fZQoaAZHQJSR473fygBoB03oA2gIR0CosKdvS+g2dX2UKGgGR0CSclUZvUBoaAdN6ANoCEdAqLOmNtIkJXV9lChoBkdAkr403XI2fmgHTegDaAhHQKi1J95yEL91fZQoaAZHQJGWqNtIkJNoB03oA2gIR0CouMfNJOFhdX2UKGgGR0CHlUmixmkFaAdN6ANoCEdAqLzhudf9gnV9lChoBkdAlUjeiN83M2gHTegDaAhHQKi/0QBgeBB1fZQoaAZHQJX2djjJdSloB03oA2gIR0CowU+NT987dX2UKGgGR0CW0TQwK0D2aAdN6ANoCEdAqMTkDlo11nV9lChoBkdAlEp0RFqi5GgHTegDaAhHQKjI+MnZ00Z1fZQoaAZHQJKM+R2bG3poB03oA2gIR0Coy/fiYLLIdX2UKGgGR0CTF/B6a9bpaAdN6ANoCEdAqM14uM+/xnV9lChoBkdAkkwHtjTa02gHTegDaAhHQKjRD3TNMXd1fZQoaAZHQJNAvU6PsAxoB03oA2gIR0Co1TSNwR5DdX2UKGgGR0CTNmY150KaaAdN6ANoCEdAqNg3dKujh3V9lChoBkdAkgUjmwJPZmgHTegDaAhHQKjZu/bj94x1fZQoaAZHQJFS5BcAzYVoB03oA2gIR0Co3VkBS1mbdX2UKGgGR0CRfH580DU3aAdN6ANoCEdAqOF+ugYgq3V9lChoBkdAkzqudsi0OWgHTegDaAhHQKjkejt5UtJ1fZQoaAZHQJJ/rPTodMloB03oA2gIR0Co5f+HzpX7dX2UKGgGR0CSBJ+/QBxQaAdN6ANoCEdAqOmx3Tuv2XV9lChoBkdAfj4E2pAD72gHTegDaAhHQKjt4wcHWz51fZQoaAZHQJNjq7/XGwRoB03oA2gIR0Co8OWnCO3ldX2UKGgGR0CSEudlum78aAdN6ANoCEdAqPJrSCvovHV9lChoBkdAkeFN5D7ZWmgHTegDaAhHQKj2GPZIxxl1fZQoaAZHQJFYa7OE/SpoB03oA2gIR0Co+lCLl3hXdX2UKGgGR0CTO7tFrl/6aAdN6ANoCEdAqP1VVaOghHV9lChoBkdAkeC8IzFdcGgHTegDaAhHQKj+0/xDst11fZQoaAZHQJKMnuG9HtpoB03oA2gIR0CpAmrWy1NQdX2UKGgGR0CSQBnvUjLTaAdN6ANoCEdAqQaaLwWnCXV9lChoBkdAkYW0EPlMiGgHTegDaAhHQKkJo5iExqR1fZQoaAZHQJGS+gOBlMBoB03oA2gIR0CpCySy2QXAdX2UKGgGR0CRKlsLORkmaAdN6ANoCEdAqQ7ab4Ju23VlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c6b3f82e294ee33cd833c955ad751a156fe5e6f83891c47e64d00e3a5c261e6
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a29e1150d60801b52db1030734cf5bc870facb1674930357f409143dd861ebe
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe70940cf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe70940f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe70940f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe70940f170>", "_build": "<function ActorCriticPolicy._build at 0x7fe70940f200>", "forward": "<function ActorCriticPolicy.forward at 0x7fe70940f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe70940f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe70940f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe70940f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe70940f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe70940f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe7094616c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658869329.4487984, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAjkIdP2dSF7/q4CA+JnWnvg4xab9VZSw/6s2fv4B5Bb84iAW/xwSSP07tTj4TuEW+XOtLP2vFTj+z9Dg/FOkIPIRHmb3D81o+WaJ3v+PVa75aNZA/SBwCPyXuW79reYK8IgsHP0jfvj48HAE/3j6NvyiZ4L4pV4S/ovIAv7khFUBM5qK/eZFfwJAtJT6GywU9b4GaPw4RjT9JL4u+QkalP8lh0j62MBE/G7WDPtaxpr+Gza+/OQlXOy74zz612JQ/5VtkvqCSdL/4vRK/8U10vSILBz9I374+PBwBP94+jb9zp/I+XAJLPlabLj/DCAQ//HlTPhaeTb+bNSu+7pyzvk8Xij/+RPC+jByHPTJ03T9jXgy/sY3rPbRTwD3fTl89Tgaov1D4DD0NDEk+Qso8QPeiYr/1QFS/BainPlMyl7/SpfK/SN++PmrM/b/ePo2/3e4bP8RGIr/zE+Q96l3DP/jNxb9QXw7AQzjVvlosOL7ezn8/AkWiP0ASx7xsnMG+PirvPnbTsT9fz+M9/FtCv55OrL96GxE/5/FUvgFkQz/L6ri+BT/1Ps13Mb+zVTM/IgsHP0jfvj48HAE/3j6Nv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAL8IWzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDiMce9AAAAAD3A/r8AAAAADHLEPQAAAADe4Pw/AAAAAAP5XTwAAAAA1ifnPwAAAAB8UZU9AAAAAGxq8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbUq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdE0KPgAAAAD3wuu/AAAAAPtvCz4AAAAAzVvjPwAAAAAR9F09AAAAAGFH7j8AAAAAPQ7FPQAAAAAfR/m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXVTxtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFqkoz0AAAAAWhv0vwAAAACMw7K9AAAAADoK/T8AAAAAgzFKPQAAAAAPZvc/AAAAACLTFL0AAAAAmU7lvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFoGjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBw00C9AAAAAI6s878AAAAAdOvcPQAAAACyKuA/AAAAAMKf+D0AAAAAV9/cPwAAAABG6wG+AAAAAIBV4L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJLk7vVmSQqMAWyUTegDjAF0lEdAp9+5gG8mKXV9lChoBkdAkn00XLvCuWgHTegDaAhHQKfirgl4TsZ1fZQoaAZHQJHlQWN3np1oB03oA2gIR0Cn5DjTjNpudX2UKGgGR0CWN5PJq7AdaAdN6ANoCEdAp+fTGkvboXV9lChoBkdAlQ8zM3ZPEmgHTegDaAhHQKfr3KB/Zuh1fZQoaAZHQJLqgj+rELpoB03oA2gIR0Cn75tsenyedX2UKGgGR0CRD7FZxJd0aAdN6ANoCEdAp/GnMINVinV9lChoBkdAkw6YgNgBtGgHTegDaAhHQKf1PBpHqeN1fZQoaAZHQJUgZ49ovi9oB03oA2gIR0Cn+U9g4OtodX2UKGgGR0CTD7PQv6CUaAdN6ANoCEdAp/xBsGgSOHV9lChoBkdAlEOtbPhQ32gHTegDaAhHQKf9x2TPjXF1fZQoaAZHQJNl99iMHbBoB03oA2gIR0CoAWIlUp/gdX2UKGgGR0CRbJx8lXzUaAdN6ANoCEdAqAVxz1bqyHV9lChoBkdAkLGgOSW7e2gHTegDaAhHQKgIYQxvegt1fZQoaAZHQI5PoZ2pyZNoB03oA2gIR0CoCdqDTSb6dX2UKGgGR0CTAHOxjawmaAdN6ANoCEdAqA1i+tbLU3V9lChoBkdAkM5Eo8ZDRmgHTegDaAhHQKgRcA0bcXZ1fZQoaAZHQJKkV75VOsVoB03oA2gIR0CoFGAh0QsgdX2UKGgGR0CTO8AZsKsuaAdN6ANoCEdAqBXiOvMbFXV9lChoBkdAkxITj7yhBmgHTegDaAhHQKgZbrqMWGh1fZQoaAZHQJQWfGipNsZoB03oA2gIR0CoHYnRsuWbdX2UKGgGR0CSfSqn3ta7aAdN6ANoCEdAqCCGO801qHV9lChoBkdAk9o5FgDzRWgHTegDaAhHQKgiA0+C9RJ1fZQoaAZHQJNsH1DjR2NoB03oA2gIR0CoJaNknTiLdX2UKGgGR0CUZfVx0dR0aAdN6ANoCEdAqCmvhGYrrnV9lChoBkdAkg7Ex20Re2gHTegDaAhHQKgspPJJXhh1fZQoaAZHQJHT4nKGL1poB03oA2gIR0CoLiyQ5myxdX2UKGgGR0CS0reRxLkCaAdN6ANoCEdAqDHLqt5lfHV9lChoBkdAkzdD4593KWgHTegDaAhHQKg12HrQgLZ1fZQoaAZHQI2kEpVjqfRoB03oA2gIR0CoONXuVopQdX2UKGgGR0CE/9I5o4+9aAdN6ANoCEdAqDptpoK2KHV9lChoBkdAj2iu3lS0jWgHTegDaAhHQKg+C5bQkX11fZQoaAZHQJAF1aaCtihoB03oA2gIR0CoQi/Aj6eodX2UKGgGR0CQ0KfjCHh1aAdN6ANoCEdAqEUuS2Yv4HV9lChoBkdAjkcYV6/qPmgHTegDaAhHQKhGpxRVIZt1fZQoaAZHQJCnUyvcJt1oB03oA2gIR0CoSioXbdrPdX2UKGgGR0CNlNM9KVY7aAdN6ANoCEdAqE45qASWaHV9lChoBkdAjPRDbzshPmgHTegDaAhHQKhRJzjFQ2x1fZQoaAZHQJCH+WpqASZoB03oA2gIR0CoUqQBHTZydX2UKGgGR0COlxw7T2FnaAdN6ANoCEdAqFY4EOiFkHV9lChoBkdAkX8Tw6QvH2gHTegDaAhHQKhaTSofjjt1fZQoaAZHQJFgkzi0fHRoB03oA2gIR0CoXVnskY4ydX2UKGgGR0CSsHhLXcxkaAdN6ANoCEdAqF7qn752yXV9lChoBkdAkibP3i704GgHTegDaAhHQKhic/nGKht1fZQoaAZHQJSTiN1hb4doB03oA2gIR0CoZpoEjgQ6dX2UKGgGR0CSt9ck+otMaAdN6ANoCEdAqGmgF5fMOnV9lChoBkdAk1NAG0NSZWgHTegDaAhHQKhrIeCCjDd1fZQoaAZHQJWnJSCOFQFoB03oA2gIR0CobrTT4L1FdX2UKGgGR0CVHqdMTN+taAdN6ANoCEdAqHLbgVGkOHV9lChoBkdAmBOxlpXZG2gHTegDaAhHQKh12FW4mTl1fZQoaAZHQJJjTFtKqXFoB03oA2gIR0Cod1gjhUBGdX2UKGgGR0CTkAO9WZJDaAdN6ANoCEdAqHraLn9vTHV9lChoBkdAkrxwbuMMqmgHTegDaAhHQKh+8jOcDr91fZQoaAZHQJSKgzi0fHRoB03oA2gIR0CogeD6nBLxdX2UKGgGR0CR/aZR8+ibaAdN6ANoCEdAqINazZ6D5HV9lChoBkdAlSkMBU70WmgHTegDaAhHQKiG7dGAkLR1fZQoaAZHQJEVcnRb8m9oB03oA2gIR0CoivfUnXumdX2UKGgGR0CJerofSx7iaAdN6ANoCEdAqI3wBNmDlHV9lChoBkdAkfVuhXbM5mgHTegDaAhHQKiPcvYe1a51fZQoaAZHQJUqHGZNO/NoB03oA2gIR0Cokv1cUucudX2UKGgGR0CTA0cophF3aAdN6ANoCEdAqJcGOU+s5nV9lChoBkdAlDN2GIsRQWgHTegDaAhHQKiaEsS00Fd1fZQoaAZHQJPdxxLkCFNoB03oA2gIR0Com5JosZpBdX2UKGgGR0CTDNsEq2BraAdN6ANoCEdAqJ8SVyFPBXV9lChoBkdAk+rNZA6dUmgHTegDaAhHQKijGgfU4Jh1fZQoaAZHQJE9VhBqsU9oB03oA2gIR0CophOrhisodX2UKGgGR0CTiM96kZaWaAdN6ANoCEdAqKeSuEEkjXV9lChoBkdAkmdIEr5IpmgHTegDaAhHQKirqFRHf/F1fZQoaAZHQJSR473fygBoB03oA2gIR0CosKdvS+g2dX2UKGgGR0CSclUZvUBoaAdN6ANoCEdAqLOmNtIkJXV9lChoBkdAkr403XI2fmgHTegDaAhHQKi1J95yEL91fZQoaAZHQJGWqNtIkJNoB03oA2gIR0CouMfNJOFhdX2UKGgGR0CHlUmixmkFaAdN6ANoCEdAqLzhudf9gnV9lChoBkdAlUjeiN83M2gHTegDaAhHQKi/0QBgeBB1fZQoaAZHQJX2djjJdSloB03oA2gIR0CowU+NT987dX2UKGgGR0CW0TQwK0D2aAdN6ANoCEdAqMTkDlo11nV9lChoBkdAlEp0RFqi5GgHTegDaAhHQKjI+MnZ00Z1fZQoaAZHQJKM+R2bG3poB03oA2gIR0Coy/fiYLLIdX2UKGgGR0CTF/B6a9bpaAdN6ANoCEdAqM14uM+/xnV9lChoBkdAkkwHtjTa02gHTegDaAhHQKjRD3TNMXd1fZQoaAZHQJNAvU6PsAxoB03oA2gIR0Co1TSNwR5DdX2UKGgGR0CTNmY150KaaAdN6ANoCEdAqNg3dKujh3V9lChoBkdAkgUjmwJPZmgHTegDaAhHQKjZu/bj94x1fZQoaAZHQJFS5BcAzYVoB03oA2gIR0Co3VkBS1mbdX2UKGgGR0CRfH580DU3aAdN6ANoCEdAqOF+ugYgq3V9lChoBkdAkzqudsi0OWgHTegDaAhHQKjkejt5UtJ1fZQoaAZHQJJ/rPTodMloB03oA2gIR0Co5f+HzpX7dX2UKGgGR0CSBJ+/QBxQaAdN6ANoCEdAqOmx3Tuv2XV9lChoBkdAfj4E2pAD72gHTegDaAhHQKjt4wcHWz51fZQoaAZHQJNjq7/XGwRoB03oA2gIR0Co8OWnCO3ldX2UKGgGR0CSEudlum78aAdN6ANoCEdAqPJrSCvovHV9lChoBkdAkeFN5D7ZWmgHTegDaAhHQKj2GPZIxxl1fZQoaAZHQJFYa7OE/SpoB03oA2gIR0Co+lCLl3hXdX2UKGgGR0CTO7tFrl/6aAdN6ANoCEdAqP1VVaOghHV9lChoBkdAkeC8IzFdcGgHTegDaAhHQKj+0/xDst11fZQoaAZHQJKMnuG9HtpoB03oA2gIR0CpAmrWy1NQdX2UKGgGR0CSQBnvUjLTaAdN6ANoCEdAqQaaLwWnCXV9lChoBkdAkYW0EPlMiGgHTegDaAhHQKkJo5iExqR1fZQoaAZHQJGS+gOBlMBoB03oA2gIR0CpCySy2QXAdX2UKGgGR0CRKlsLORkmaAdN6ANoCEdAqQ7ab4Ju23VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (947 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 956.6527883809991, "std_reward": 232.88948580407785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-26T22:05:54.547644"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a958c18d1f79358713e0719308f1ae70baed86bb9b0cfcb737c038832117fa6
|
3 |
+
size 2763
|