Export script for image encoder
Browse files
mobile_sam_encoder_onnx/export_image_encoder.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from mobile_sam import sam_model_registry
|
5 |
+
from .onnx_image_encoder import ImageEncoderOnnxModel
|
6 |
+
|
7 |
+
import os
|
8 |
+
import argparse
|
9 |
+
import warnings
|
10 |
+
|
11 |
+
try:
|
12 |
+
import onnxruntime # type: ignore
|
13 |
+
|
14 |
+
onnxruntime_exists = True
|
15 |
+
except ImportError:
|
16 |
+
onnxruntime_exists = False
|
17 |
+
|
18 |
+
parser = argparse.ArgumentParser(
|
19 |
+
description="Export the SAM image encoder to an ONNX model."
|
20 |
+
)
|
21 |
+
|
22 |
+
parser.add_argument(
|
23 |
+
"--checkpoint",
|
24 |
+
type=str,
|
25 |
+
required=True,
|
26 |
+
help="The path to the SAM model checkpoint.",
|
27 |
+
)
|
28 |
+
|
29 |
+
parser.add_argument(
|
30 |
+
"--output", type=str, required=True, help="The filename to save the ONNX model to."
|
31 |
+
)
|
32 |
+
|
33 |
+
parser.add_argument(
|
34 |
+
"--model-type",
|
35 |
+
type=str,
|
36 |
+
required=True,
|
37 |
+
help="In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.",
|
38 |
+
)
|
39 |
+
|
40 |
+
parser.add_argument(
|
41 |
+
"--use-preprocess",
|
42 |
+
action="store_true",
|
43 |
+
help="Whether to preprocess the image by resizing, standardizing, etc.",
|
44 |
+
)
|
45 |
+
|
46 |
+
parser.add_argument(
|
47 |
+
"--opset",
|
48 |
+
type=int,
|
49 |
+
default=17,
|
50 |
+
help="The ONNX opset version to use. Must be >=11",
|
51 |
+
)
|
52 |
+
|
53 |
+
parser.add_argument(
|
54 |
+
"--quantize-out",
|
55 |
+
type=str,
|
56 |
+
default=None,
|
57 |
+
help=(
|
58 |
+
"If set, will quantize the model and save it with this name. "
|
59 |
+
"Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize."
|
60 |
+
),
|
61 |
+
)
|
62 |
+
|
63 |
+
parser.add_argument(
|
64 |
+
"--gelu-approximate",
|
65 |
+
action="store_true",
|
66 |
+
help=(
|
67 |
+
"Replace GELU operations with approximations using tanh. Useful "
|
68 |
+
"for some runtimes that have slow or unimplemented erf ops, used in GELU."
|
69 |
+
),
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def run_export(
|
74 |
+
model_type: str,
|
75 |
+
checkpoint: str,
|
76 |
+
output: str,
|
77 |
+
use_preprocess: bool,
|
78 |
+
opset: int,
|
79 |
+
gelu_approximate: bool = False,
|
80 |
+
):
|
81 |
+
print("Loading model...")
|
82 |
+
sam = sam_model_registry[model_type](checkpoint=checkpoint)
|
83 |
+
|
84 |
+
onnx_model = ImageEncoderOnnxModel(
|
85 |
+
model=sam,
|
86 |
+
use_preprocess=use_preprocess,
|
87 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
88 |
+
pixel_std=[58.395, 57.12, 57.375],
|
89 |
+
)
|
90 |
+
|
91 |
+
if gelu_approximate:
|
92 |
+
for n, m in onnx_model.named_modules():
|
93 |
+
if isinstance(m, torch.nn.GELU):
|
94 |
+
m.approximate = "tanh"
|
95 |
+
|
96 |
+
image_size = sam.image_encoder.img_size
|
97 |
+
if use_preprocess:
|
98 |
+
dummy_input = {
|
99 |
+
"input_image": torch.randn((image_size, image_size, 3), dtype=torch.float)
|
100 |
+
}
|
101 |
+
dynamic_axes = {
|
102 |
+
"input_image": {0: "image_height", 1: "image_width"},
|
103 |
+
}
|
104 |
+
else:
|
105 |
+
dummy_input = {
|
106 |
+
"input_image": torch.randn(
|
107 |
+
(1, 3, image_size, image_size), dtype=torch.float
|
108 |
+
)
|
109 |
+
}
|
110 |
+
dynamic_axes = None
|
111 |
+
|
112 |
+
_ = onnx_model(**dummy_input)
|
113 |
+
|
114 |
+
output_names = ["image_embeddings"]
|
115 |
+
|
116 |
+
with warnings.catch_warnings():
|
117 |
+
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
|
118 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
119 |
+
print(f"Exporting onnx model to {output}...")
|
120 |
+
if model_type == "vit_h":
|
121 |
+
output_dir, output_file = os.path.split(output)
|
122 |
+
os.makedirs(output_dir, mode=0o777, exist_ok=True)
|
123 |
+
torch.onnx.export(
|
124 |
+
onnx_model,
|
125 |
+
tuple(dummy_input.values()),
|
126 |
+
output,
|
127 |
+
export_params=True,
|
128 |
+
verbose=False,
|
129 |
+
opset_version=opset,
|
130 |
+
do_constant_folding=True,
|
131 |
+
input_names=list(dummy_input.keys()),
|
132 |
+
output_names=output_names,
|
133 |
+
dynamic_axes=dynamic_axes,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
with open(output, "wb") as f:
|
137 |
+
torch.onnx.export(
|
138 |
+
onnx_model,
|
139 |
+
tuple(dummy_input.values()),
|
140 |
+
f,
|
141 |
+
export_params=True,
|
142 |
+
verbose=False,
|
143 |
+
opset_version=opset,
|
144 |
+
do_constant_folding=True,
|
145 |
+
input_names=list(dummy_input.keys()),
|
146 |
+
output_names=output_names,
|
147 |
+
dynamic_axes=dynamic_axes,
|
148 |
+
)
|
149 |
+
|
150 |
+
if onnxruntime_exists:
|
151 |
+
ort_inputs = {k: to_numpy(v) for k, v in dummy_input.items()}
|
152 |
+
providers = ["CPUExecutionProvider"]
|
153 |
+
|
154 |
+
if model_type == "vit_h":
|
155 |
+
session_option = onnxruntime.SessionOptions()
|
156 |
+
ort_session = onnxruntime.InferenceSession(output, providers=providers)
|
157 |
+
param_file = os.listdir(output_dir)
|
158 |
+
param_file.remove(output_file)
|
159 |
+
for i, layer in enumerate(param_file):
|
160 |
+
with open(os.path.join(output_dir, layer), "rb") as fp:
|
161 |
+
weights = np.frombuffer(fp.read(), dtype=np.float32)
|
162 |
+
weights = onnxruntime.OrtValue.ortvalue_from_numpy(weights)
|
163 |
+
session_option.add_initializer(layer, weights)
|
164 |
+
else:
|
165 |
+
ort_session = onnxruntime.InferenceSession(output, providers=providers)
|
166 |
+
|
167 |
+
_ = ort_session.run(None, ort_inputs)
|
168 |
+
print("Model has successfully been run with ONNXRuntime.")
|
169 |
+
|
170 |
+
|
171 |
+
def to_numpy(tensor):
|
172 |
+
return tensor.cpu().numpy()
|
173 |
+
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
args = parser.parse_args()
|
177 |
+
run_export(
|
178 |
+
model_type=args.model_type,
|
179 |
+
checkpoint=args.checkpoint,
|
180 |
+
output=args.output,
|
181 |
+
use_preprocess=args.use_preprocess,
|
182 |
+
opset=args.opset,
|
183 |
+
gelu_approximate=args.gelu_approximate,
|
184 |
+
)
|
185 |
+
|
186 |
+
if args.quantize_out is not None:
|
187 |
+
assert onnxruntime_exists, "onnxruntime is required to quantize the model."
|
188 |
+
from onnxruntime.quantization import QuantType # type: ignore
|
189 |
+
from onnxruntime.quantization.quantize import quantize_dynamic # type: ignore
|
190 |
+
|
191 |
+
print(f"Quantizing model and writing to {args.quantize_out}...")
|
192 |
+
quantize_dynamic(
|
193 |
+
model_input=args.output,
|
194 |
+
model_output=args.quantize_out,
|
195 |
+
optimize_model=True,
|
196 |
+
per_channel=False,
|
197 |
+
reduce_range=False,
|
198 |
+
weight_type=QuantType.QUInt8,
|
199 |
+
)
|
200 |
+
print("Done!")
|
mobile_sam_encoder_onnx/onnx_image_encoder.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
from typing import Tuple, List
|
6 |
+
|
7 |
+
import mobile_sam
|
8 |
+
from mobile_sam.modeling import Sam
|
9 |
+
from mobile_sam.utils.amg import calculate_stability_score
|
10 |
+
|
11 |
+
|
12 |
+
class ImageEncoderOnnxModel(nn.Module):
|
13 |
+
"""
|
14 |
+
This model should not be called directly, but is used in ONNX export.
|
15 |
+
It combines the image encoder of Sam, with some functions modified to enable
|
16 |
+
model tracing. Also supports extra options controlling what information. See
|
17 |
+
the ONNX export script for details.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
model: Sam,
|
23 |
+
use_preprocess: bool,
|
24 |
+
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
25 |
+
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.use_preprocess = use_preprocess
|
29 |
+
self.pixel_mean = torch.tensor(pixel_mean, dtype=torch.float)
|
30 |
+
self.pixel_std = torch.tensor(pixel_std, dtype=torch.float)
|
31 |
+
self.image_encoder = model.image_encoder
|
32 |
+
|
33 |
+
@torch.no_grad()
|
34 |
+
def forward(self, input_image: torch.Tensor):
|
35 |
+
if self.use_preprocess:
|
36 |
+
input_image = self.preprocess(input_image)
|
37 |
+
image_embeddings = self.image_encoder(input_image)
|
38 |
+
return image_embeddings
|
39 |
+
|
40 |
+
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
41 |
+
# Normalize colors
|
42 |
+
x = (x - self.pixel_mean) / self.pixel_std
|
43 |
+
|
44 |
+
# permute channels
|
45 |
+
x = torch.permute(x, (2, 0, 1))
|
46 |
+
|
47 |
+
# Pad
|
48 |
+
h, w = x.shape[-2:]
|
49 |
+
padh = self.image_encoder.img_size - h
|
50 |
+
padw = self.image_encoder.img_size - w
|
51 |
+
x = F.pad(x, (0, padw, 0, padh))
|
52 |
+
|
53 |
+
# expand channels
|
54 |
+
x = torch.unsqueeze(x, 0)
|
55 |
+
return x
|