|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Graphormer model.""" |
|
|
|
import math |
|
from typing import Iterable, Iterator, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BaseModelOutputWithNoAttention, |
|
SequenceClassifierOutput, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...utils import logging |
|
from .configuration_graphormer import GraphormerConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "graphormer-base-pcqm4mv1" |
|
_CONFIG_FOR_DOC = "GraphormerConfig" |
|
|
|
|
|
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"clefourrier/graphormer-base-pcqm4mv1", |
|
"clefourrier/graphormer-base-pcqm4mv2", |
|
|
|
] |
|
|
|
|
|
def quant_noise(module: nn.Module, p: float, block_size: int): |
|
""" |
|
From: |
|
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/quant_noise.py |
|
|
|
Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product |
|
Quantization as described in "Training with Quantization Noise for Extreme Model Compression" |
|
|
|
Args: |
|
- module: nn.Module |
|
- p: amount of Quantization Noise |
|
- block_size: size of the blocks for subsequent quantization with iPQ |
|
|
|
Remarks: |
|
- Module weights must have the right sizes wrt the block size |
|
- Only Linear, Embedding and Conv2d modules are supported for the moment |
|
- For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: |
|
Revisiting the Quantization of Neural Networks" |
|
- We implement the simplest form of noise here as stated in the paper which consists in randomly dropping |
|
blocks |
|
""" |
|
|
|
|
|
if p <= 0: |
|
return module |
|
|
|
|
|
if not isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)): |
|
raise NotImplementedError("Module unsupported for quant_noise.") |
|
|
|
|
|
is_conv = module.weight.ndim == 4 |
|
|
|
|
|
if not is_conv: |
|
if module.weight.size(1) % block_size != 0: |
|
raise AssertionError("Input features must be a multiple of block sizes") |
|
|
|
|
|
else: |
|
|
|
if module.kernel_size == (1, 1): |
|
if module.in_channels % block_size != 0: |
|
raise AssertionError("Input channels must be a multiple of block sizes") |
|
|
|
else: |
|
k = module.kernel_size[0] * module.kernel_size[1] |
|
if k % block_size != 0: |
|
raise AssertionError("Kernel size must be a multiple of block size") |
|
|
|
def _forward_pre_hook(mod, input): |
|
|
|
if mod.training: |
|
if not is_conv: |
|
|
|
weight = mod.weight |
|
in_features = weight.size(1) |
|
out_features = weight.size(0) |
|
|
|
|
|
mask = torch.zeros(in_features // block_size * out_features, device=weight.device) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) |
|
|
|
else: |
|
|
|
weight = mod.weight |
|
in_channels = mod.in_channels |
|
out_channels = mod.out_channels |
|
|
|
|
|
if mod.kernel_size == (1, 1): |
|
mask = torch.zeros( |
|
int(in_channels // block_size * out_channels), |
|
device=weight.device, |
|
) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) |
|
else: |
|
mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device) |
|
mask.bernoulli_(p) |
|
mask = mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) |
|
|
|
|
|
mask = mask.to(torch.bool) |
|
s = 1 / (1 - p) |
|
mod.weight.data = s * weight.masked_fill(mask, 0) |
|
|
|
module.register_forward_pre_hook(_forward_pre_hook) |
|
return module |
|
|
|
|
|
class LayerDropModuleList(nn.ModuleList): |
|
""" |
|
From: |
|
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/layer_drop.py |
|
A LayerDrop implementation based on [`torch.nn.ModuleList`]. LayerDrop as described in |
|
https://arxiv.org/abs/1909.11556. |
|
|
|
We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During |
|
evaluation we always iterate over all layers. |
|
|
|
Usage: |
|
|
|
```python |
|
layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3]) |
|
for layer in layers: # this might iterate over layers 1 and 3 |
|
x = layer(x) |
|
for layer in layers: # this might iterate over all layers |
|
x = layer(x) |
|
for layer in layers: # this might not iterate over any layers |
|
x = layer(x) |
|
``` |
|
|
|
Args: |
|
p (float): probability of dropping out each layer |
|
modules (iterable, optional): an iterable of modules to add |
|
""" |
|
|
|
def __init__(self, p: float, modules: Optional[Iterable[nn.Module]] = None): |
|
super().__init__(modules) |
|
self.p = p |
|
|
|
def __iter__(self) -> Iterator[nn.Module]: |
|
dropout_probs = torch.empty(len(self)).uniform_() |
|
for i, m in enumerate(super().__iter__()): |
|
if not self.training or (dropout_probs[i] > self.p): |
|
yield m |
|
|
|
|
|
class GraphormerGraphNodeFeature(nn.Module): |
|
""" |
|
Compute node features for each node in the graph. |
|
""" |
|
|
|
def __init__(self, config: GraphormerConfig): |
|
super().__init__() |
|
self.num_heads = config.num_attention_heads |
|
self.num_atoms = config.num_atoms |
|
|
|
self.atom_encoder = nn.Embedding(config.num_atoms + 1, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.in_degree_encoder = nn.Embedding( |
|
config.num_in_degree, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
self.out_degree_encoder = nn.Embedding( |
|
config.num_out_degree, config.hidden_size, padding_idx=config.pad_token_id |
|
) |
|
|
|
self.graph_token = nn.Embedding(1, config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
input_nodes: torch.LongTensor, |
|
in_degree: torch.LongTensor, |
|
out_degree: torch.LongTensor, |
|
) -> torch.Tensor: |
|
n_graph, n_node = input_nodes.size()[:2] |
|
|
|
node_feature = ( |
|
self.atom_encoder(input_nodes).sum(dim=-2) |
|
+ self.in_degree_encoder(in_degree) |
|
+ self.out_degree_encoder(out_degree) |
|
) |
|
|
|
graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1) |
|
|
|
graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1) |
|
|
|
return graph_node_feature |
|
|
|
|
|
class GraphormerGraphAttnBias(nn.Module): |
|
""" |
|
Compute attention bias for each head. |
|
""" |
|
|
|
def __init__(self, config: GraphormerConfig): |
|
super().__init__() |
|
self.num_heads = config.num_attention_heads |
|
self.multi_hop_max_dist = config.multi_hop_max_dist |
|
|
|
|
|
|
|
self.edge_encoder = nn.Embedding(config.num_edges + 1, config.num_attention_heads, padding_idx=0) |
|
|
|
self.edge_type = config.edge_type |
|
if self.edge_type == "multi_hop": |
|
self.edge_dis_encoder = nn.Embedding( |
|
config.num_edge_dis * config.num_attention_heads * config.num_attention_heads, |
|
1, |
|
) |
|
|
|
self.spatial_pos_encoder = nn.Embedding(config.num_spatial, config.num_attention_heads, padding_idx=0) |
|
|
|
self.graph_token_virtual_distance = nn.Embedding(1, config.num_attention_heads) |
|
|
|
def forward( |
|
self, |
|
input_nodes: torch.LongTensor, |
|
attn_bias: torch.Tensor, |
|
spatial_pos: torch.LongTensor, |
|
input_edges: torch.LongTensor, |
|
attn_edge_type: torch.LongTensor, |
|
) -> torch.Tensor: |
|
n_graph, n_node = input_nodes.size()[:2] |
|
graph_attn_bias = attn_bias.clone() |
|
graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat( |
|
1, self.num_heads, 1, 1 |
|
) |
|
|
|
|
|
|
|
spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2) |
|
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias |
|
|
|
|
|
t = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1) |
|
graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t |
|
graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t |
|
|
|
|
|
if self.edge_type == "multi_hop": |
|
spatial_pos_ = spatial_pos.clone() |
|
|
|
spatial_pos_[spatial_pos_ == 0] = 1 |
|
|
|
spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_) |
|
if self.multi_hop_max_dist > 0: |
|
spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist) |
|
input_edges = input_edges[:, :, :, : self.multi_hop_max_dist, :] |
|
|
|
|
|
input_edges = self.edge_encoder(input_edges).mean(-2) |
|
max_dist = input_edges.size(-2) |
|
edge_input_flat = input_edges.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.num_heads) |
|
edge_input_flat = torch.bmm( |
|
edge_input_flat, |
|
self.edge_dis_encoder.weight.reshape(-1, self.num_heads, self.num_heads)[:max_dist, :, :], |
|
) |
|
input_edges = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.num_heads).permute( |
|
1, 2, 3, 0, 4 |
|
) |
|
input_edges = (input_edges.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2) |
|
else: |
|
|
|
input_edges = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2) |
|
|
|
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + input_edges |
|
graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) |
|
|
|
return graph_attn_bias |
|
|
|
|
|
class GraphormerMultiheadAttention(nn.Module): |
|
"""Multi-headed attention. |
|
|
|
See "Attention Is All You Need" for more details. |
|
""" |
|
|
|
def __init__(self, config: GraphormerConfig): |
|
super().__init__() |
|
self.embedding_dim = config.embedding_dim |
|
self.kdim = config.kdim if config.kdim is not None else config.embedding_dim |
|
self.vdim = config.vdim if config.vdim is not None else config.embedding_dim |
|
self.qkv_same_dim = self.kdim == config.embedding_dim and self.vdim == config.embedding_dim |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) |
|
|
|
self.head_dim = config.embedding_dim // config.num_attention_heads |
|
if not (self.head_dim * config.num_attention_heads == self.embedding_dim): |
|
raise AssertionError("The embedding_dim must be divisible by num_heads.") |
|
self.scaling = self.head_dim**-0.5 |
|
|
|
self.self_attention = True |
|
if not (self.self_attention): |
|
raise NotImplementedError("The Graphormer model only supports self attention for now.") |
|
if self.self_attention and not self.qkv_same_dim: |
|
raise AssertionError("Self-attention requires query, key and value to be of the same size.") |
|
|
|
self.k_proj = quant_noise( |
|
nn.Linear(self.kdim, config.embedding_dim, bias=config.bias), |
|
config.q_noise, |
|
config.qn_block_size, |
|
) |
|
self.v_proj = quant_noise( |
|
nn.Linear(self.vdim, config.embedding_dim, bias=config.bias), |
|
config.q_noise, |
|
config.qn_block_size, |
|
) |
|
self.q_proj = quant_noise( |
|
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias), |
|
config.q_noise, |
|
config.qn_block_size, |
|
) |
|
|
|
self.out_proj = quant_noise( |
|
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias), |
|
config.q_noise, |
|
config.qn_block_size, |
|
) |
|
|
|
self.onnx_trace = False |
|
|
|
def reset_parameters(self): |
|
if self.qkv_same_dim: |
|
|
|
|
|
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) |
|
else: |
|
nn.init.xavier_uniform_(self.k_proj.weight) |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
nn.init.xavier_uniform_(self.q_proj.weight) |
|
|
|
nn.init.xavier_uniform_(self.out_proj.weight) |
|
if self.out_proj.bias is not None: |
|
nn.init.constant_(self.out_proj.bias, 0.0) |
|
|
|
def forward( |
|
self, |
|
query: torch.LongTensor, |
|
key: Optional[torch.Tensor], |
|
value: Optional[torch.Tensor], |
|
attn_bias: Optional[torch.Tensor], |
|
key_padding_mask: Optional[torch.Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
before_softmax: bool = False, |
|
need_head_weights: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
""" |
|
Args: |
|
key_padding_mask (Bytetorch.Tensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (Bytetorch.Tensor, optional): typically used to |
|
implement causal attention, where the mask prevents the attention from looking forward in time |
|
(default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: return the average attention weights over all |
|
heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
tgt_len, bsz, embedding_dim = query.size() |
|
src_len = tgt_len |
|
if not (embedding_dim == self.embedding_dim): |
|
raise AssertionError( |
|
f"The query embedding dimension {embedding_dim} is not equal to the expected embedding_dim" |
|
f" {self.embedding_dim}." |
|
) |
|
if not (list(query.size()) == [tgt_len, bsz, embedding_dim]): |
|
raise AssertionError("Query size incorrect in Graphormer, compared to model dimensions.") |
|
|
|
if key is not None: |
|
src_len, key_bsz, _ = key.size() |
|
if not torch.jit.is_scripting(): |
|
if (key_bsz != bsz) or (value is None) or not (src_len, bsz == value.shape[:2]): |
|
raise AssertionError( |
|
"The batch shape does not match the key or value shapes provided to the attention." |
|
) |
|
|
|
q = self.q_proj(query) |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
|
|
q *= self.scaling |
|
|
|
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if k is not None: |
|
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if v is not None: |
|
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
|
|
if (k is None) or not (k.size(1) == src_len): |
|
raise AssertionError("The shape of the key generated in the attention is incorrect") |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
if key_padding_mask.size(0) != bsz or key_padding_mask.size(1) != src_len: |
|
raise AssertionError( |
|
"The shape of the generated padding mask for the key does not match expected dimensions." |
|
) |
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) |
|
|
|
if list(attn_weights.size()) != [bsz * self.num_heads, tgt_len, src_len]: |
|
raise AssertionError("The attention weights generated do not match the expected dimensions.") |
|
|
|
if attn_bias is not None: |
|
attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
attn_weights += attn_mask |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") |
|
) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if before_softmax: |
|
return attn_weights, v |
|
|
|
attn_weights_float = torch.nn.functional.softmax(attn_weights, dim=-1) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = self.dropout_module(attn_weights) |
|
|
|
if v is None: |
|
raise AssertionError("No value generated") |
|
attn = torch.bmm(attn_probs, v) |
|
if list(attn.size()) != [bsz * self.num_heads, tgt_len, self.head_dim]: |
|
raise AssertionError("The attention generated do not match the expected dimensions.") |
|
|
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embedding_dim) |
|
attn: torch.Tensor = self.out_proj(attn) |
|
|
|
attn_weights = None |
|
if need_weights: |
|
attn_weights = attn_weights_float.contiguous().view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
|
|
return attn, attn_weights |
|
|
|
def apply_sparse_mask(self, attn_weights: torch.Tensor, tgt_len: int, src_len: int, bsz: int) -> torch.Tensor: |
|
return attn_weights |
|
|
|
|
|
class GraphormerGraphEncoderLayer(nn.Module): |
|
def __init__(self, config: GraphormerConfig) -> None: |
|
super().__init__() |
|
|
|
|
|
self.embedding_dim = config.embedding_dim |
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_dropout = config.attention_dropout |
|
self.q_noise = config.q_noise |
|
self.qn_block_size = config.qn_block_size |
|
self.pre_layernorm = config.pre_layernorm |
|
|
|
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) |
|
|
|
self.activation_dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) |
|
|
|
|
|
self.activation_fn = ACT2FN[config.activation_fn] |
|
self.self_attn = GraphormerMultiheadAttention(config) |
|
|
|
|
|
self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim) |
|
|
|
self.fc1 = self.build_fc( |
|
self.embedding_dim, |
|
config.ffn_embedding_dim, |
|
q_noise=config.q_noise, |
|
qn_block_size=config.qn_block_size, |
|
) |
|
self.fc2 = self.build_fc( |
|
config.ffn_embedding_dim, |
|
self.embedding_dim, |
|
q_noise=config.q_noise, |
|
qn_block_size=config.qn_block_size, |
|
) |
|
|
|
|
|
self.final_layer_norm = nn.LayerNorm(self.embedding_dim) |
|
|
|
def build_fc( |
|
self, input_dim: int, output_dim: int, q_noise: float, qn_block_size: int |
|
) -> Union[nn.Module, nn.Linear, nn.Embedding, nn.Conv2d]: |
|
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) |
|
|
|
def forward( |
|
self, |
|
input_nodes: torch.Tensor, |
|
self_attn_bias: Optional[torch.Tensor] = None, |
|
self_attn_mask: Optional[torch.Tensor] = None, |
|
self_attn_padding_mask: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
""" |
|
nn.LayerNorm is applied either before or after the self-attention/ffn modules similar to the original |
|
Transformer implementation. |
|
""" |
|
residual = input_nodes |
|
if self.pre_layernorm: |
|
input_nodes = self.self_attn_layer_norm(input_nodes) |
|
|
|
input_nodes, attn = self.self_attn( |
|
query=input_nodes, |
|
key=input_nodes, |
|
value=input_nodes, |
|
attn_bias=self_attn_bias, |
|
key_padding_mask=self_attn_padding_mask, |
|
need_weights=False, |
|
attn_mask=self_attn_mask, |
|
) |
|
input_nodes = self.dropout_module(input_nodes) |
|
input_nodes = residual + input_nodes |
|
if not self.pre_layernorm: |
|
input_nodes = self.self_attn_layer_norm(input_nodes) |
|
|
|
residual = input_nodes |
|
if self.pre_layernorm: |
|
input_nodes = self.final_layer_norm(input_nodes) |
|
input_nodes = self.activation_fn(self.fc1(input_nodes)) |
|
input_nodes = self.activation_dropout_module(input_nodes) |
|
input_nodes = self.fc2(input_nodes) |
|
input_nodes = self.dropout_module(input_nodes) |
|
input_nodes = residual + input_nodes |
|
if not self.pre_layernorm: |
|
input_nodes = self.final_layer_norm(input_nodes) |
|
|
|
return input_nodes, attn |
|
|
|
|
|
class GraphormerGraphEncoder(nn.Module): |
|
def __init__(self, config: GraphormerConfig): |
|
super().__init__() |
|
|
|
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) |
|
self.layerdrop = config.layerdrop |
|
self.embedding_dim = config.embedding_dim |
|
self.apply_graphormer_init = config.apply_graphormer_init |
|
self.traceable = config.traceable |
|
|
|
self.graph_node_feature = GraphormerGraphNodeFeature(config) |
|
self.graph_attn_bias = GraphormerGraphAttnBias(config) |
|
|
|
self.embed_scale = config.embed_scale |
|
|
|
if config.q_noise > 0: |
|
self.quant_noise = quant_noise( |
|
nn.Linear(self.embedding_dim, self.embedding_dim, bias=False), |
|
config.q_noise, |
|
config.qn_block_size, |
|
) |
|
else: |
|
self.quant_noise = None |
|
|
|
if config.encoder_normalize_before: |
|
self.emb_layer_norm = nn.LayerNorm(self.embedding_dim) |
|
else: |
|
self.emb_layer_norm = None |
|
|
|
if config.pre_layernorm: |
|
self.final_layer_norm = nn.LayerNorm(self.embedding_dim) |
|
|
|
if self.layerdrop > 0.0: |
|
self.layers = LayerDropModuleList(p=self.layerdrop) |
|
else: |
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend([GraphormerGraphEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
|
|
if config.freeze_embeddings: |
|
raise NotImplementedError("Freezing embeddings is not implemented yet.") |
|
|
|
for layer in range(config.num_trans_layers_to_freeze): |
|
m = self.layers[layer] |
|
if m is not None: |
|
for p in m.parameters(): |
|
p.requires_grad = False |
|
|
|
def forward( |
|
self, |
|
input_nodes: torch.LongTensor, |
|
input_edges: torch.LongTensor, |
|
attn_bias: torch.Tensor, |
|
in_degree: torch.LongTensor, |
|
out_degree: torch.LongTensor, |
|
spatial_pos: torch.LongTensor, |
|
attn_edge_type: torch.LongTensor, |
|
perturb=None, |
|
last_state_only: bool = False, |
|
token_embeddings: Optional[torch.Tensor] = None, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
) -> Tuple[Union[torch.Tensor, List[torch.LongTensor]], torch.Tensor]: |
|
|
|
data_x = input_nodes |
|
n_graph, n_node = data_x.size()[:2] |
|
padding_mask = (data_x[:, :, 0]).eq(0) |
|
padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype) |
|
padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1) |
|
|
|
attn_bias = self.graph_attn_bias(input_nodes, attn_bias, spatial_pos, input_edges, attn_edge_type) |
|
|
|
if token_embeddings is not None: |
|
input_nodes = token_embeddings |
|
else: |
|
input_nodes = self.graph_node_feature(input_nodes, in_degree, out_degree) |
|
|
|
if perturb is not None: |
|
input_nodes[:, 1:, :] += perturb |
|
|
|
if self.embed_scale is not None: |
|
input_nodes = input_nodes * self.embed_scale |
|
|
|
if self.quant_noise is not None: |
|
input_nodes = self.quant_noise(input_nodes) |
|
|
|
if self.emb_layer_norm is not None: |
|
input_nodes = self.emb_layer_norm(input_nodes) |
|
|
|
input_nodes = self.dropout_module(input_nodes) |
|
|
|
input_nodes = input_nodes.transpose(0, 1) |
|
|
|
inner_states = [] |
|
if not last_state_only: |
|
inner_states.append(input_nodes) |
|
|
|
for layer in self.layers: |
|
input_nodes, _ = layer( |
|
input_nodes, |
|
self_attn_padding_mask=padding_mask, |
|
self_attn_mask=attn_mask, |
|
self_attn_bias=attn_bias, |
|
) |
|
if not last_state_only: |
|
inner_states.append(input_nodes) |
|
|
|
graph_rep = input_nodes[0, :, :] |
|
|
|
if last_state_only: |
|
inner_states = [input_nodes] |
|
|
|
if self.traceable: |
|
return torch.stack(inner_states), graph_rep |
|
else: |
|
return inner_states, graph_rep |
|
|
|
|
|
class GraphormerDecoderHead(nn.Module): |
|
def __init__(self, embedding_dim: int, num_classes: int): |
|
super().__init__() |
|
"""num_classes should be 1 for regression, or the number of classes for classification""" |
|
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) |
|
self.classifier = nn.Linear(embedding_dim, num_classes, bias=False) |
|
self.num_classes = num_classes |
|
|
|
def forward(self, input_nodes: torch.Tensor, **unused) -> torch.Tensor: |
|
input_nodes = self.classifier(input_nodes) |
|
input_nodes = input_nodes + self.lm_output_learned_bias |
|
return input_nodes |
|
|
|
|
|
class GraphormerPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = GraphormerConfig |
|
base_model_prefix = "graphormer" |
|
supports_gradient_checkpointing = True |
|
main_input_name_nodes = "input_nodes" |
|
main_input_name_edges = "input_edges" |
|
|
|
def normal_(self, data: torch.Tensor): |
|
|
|
|
|
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) |
|
|
|
def init_graphormer_params(self, module: Union[nn.Linear, nn.Embedding, GraphormerMultiheadAttention]): |
|
""" |
|
Initialize the weights specific to the Graphormer Model. |
|
""" |
|
if isinstance(module, nn.Linear): |
|
self.normal_(module.weight.data) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
if isinstance(module, nn.Embedding): |
|
self.normal_(module.weight.data) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
if isinstance(module, GraphormerMultiheadAttention): |
|
self.normal_(module.q_proj.weight.data) |
|
self.normal_(module.k_proj.weight.data) |
|
self.normal_(module.v_proj.weight.data) |
|
|
|
def _init_weights( |
|
self, |
|
module: Union[ |
|
nn.Linear, nn.Conv2d, nn.Embedding, nn.LayerNorm, GraphormerMultiheadAttention, GraphormerGraphEncoder |
|
], |
|
): |
|
""" |
|
Initialize the weights |
|
""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, GraphormerMultiheadAttention): |
|
module.q_proj.weight.data.normal_(mean=0.0, std=0.02) |
|
module.k_proj.weight.data.normal_(mean=0.0, std=0.02) |
|
module.v_proj.weight.data.normal_(mean=0.0, std=0.02) |
|
module.reset_parameters() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, GraphormerGraphEncoder): |
|
if module.apply_graphormer_init: |
|
module.apply(self.init_graphormer_params) |
|
|
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, GraphormerModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class GraphormerModel(GraphormerPreTrainedModel): |
|
"""The Graphormer model is a graph-encoder model. |
|
|
|
It goes from a graph to its representation. If you want to use the model for a downstream classification task, use |
|
GraphormerForGraphClassification instead. For any other downstream task, feel free to add a new class, or combine |
|
this model with a downstream model of your choice, following the example in GraphormerForGraphClassification. |
|
""" |
|
|
|
def __init__(self, config: GraphormerConfig): |
|
super().__init__(config) |
|
self.max_nodes = config.max_nodes |
|
|
|
self.graph_encoder = GraphormerGraphEncoder(config) |
|
|
|
self.share_input_output_embed = config.share_input_output_embed |
|
self.lm_output_learned_bias = None |
|
|
|
|
|
self.load_softmax = not getattr(config, "remove_head", False) |
|
|
|
self.lm_head_transform_weight = nn.Linear(config.embedding_dim, config.embedding_dim) |
|
self.activation_fn = ACT2FN[config.activation_fn] |
|
self.layer_norm = nn.LayerNorm(config.embedding_dim) |
|
|
|
self.post_init() |
|
|
|
def reset_output_layer_parameters(self): |
|
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) |
|
|
|
def forward( |
|
self, |
|
input_nodes: torch.LongTensor, |
|
input_edges: torch.LongTensor, |
|
attn_bias: torch.Tensor, |
|
in_degree: torch.LongTensor, |
|
out_degree: torch.LongTensor, |
|
spatial_pos: torch.LongTensor, |
|
attn_edge_type: torch.LongTensor, |
|
perturb=None, |
|
masked_tokens=None, |
|
return_dict: Optional[bool] = None, |
|
**unused, |
|
) -> Union[Tuple[torch.LongTensor], BaseModelOutputWithNoAttention]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
inner_states, graph_rep = self.graph_encoder( |
|
input_nodes, input_edges, attn_bias, in_degree, out_degree, spatial_pos, attn_edge_type, perturb=perturb |
|
) |
|
|
|
|
|
input_nodes = inner_states[-1].transpose(0, 1) |
|
|
|
|
|
if masked_tokens is not None: |
|
raise NotImplementedError |
|
|
|
input_nodes = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(input_nodes))) |
|
|
|
|
|
if self.share_input_output_embed and hasattr(self.graph_encoder.embed_tokens, "weight"): |
|
input_nodes = torch.nn.functional.linear(input_nodes, self.graph_encoder.embed_tokens.weight) |
|
|
|
if not return_dict: |
|
return tuple(x for x in [input_nodes, inner_states] if x is not None) |
|
return BaseModelOutputWithNoAttention(last_hidden_state=input_nodes, hidden_states=inner_states) |
|
|
|
def max_nodes(self): |
|
"""Maximum output length supported by the encoder.""" |
|
return self.max_nodes |
|
|
|
|
|
class GraphormerForGraphClassification(GraphormerPreTrainedModel): |
|
""" |
|
This model can be used for graph-level classification or regression tasks. |
|
|
|
It can be trained on |
|
- regression (by setting config.num_classes to 1); there should be one float-type label per graph |
|
- one task classification (by setting config.num_classes to the number of classes); there should be one integer |
|
label per graph |
|
- binary multi-task classification (by setting config.num_classes to the number of labels); there should be a list |
|
of integer labels for each graph. |
|
""" |
|
|
|
def __init__(self, config: GraphormerConfig): |
|
super().__init__(config) |
|
self.encoder = GraphormerModel(config) |
|
self.embedding_dim = config.embedding_dim |
|
self.num_classes = config.num_classes |
|
self.classifier = GraphormerDecoderHead(self.embedding_dim, self.num_classes) |
|
self.is_encoder_decoder = True |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_nodes: torch.LongTensor, |
|
input_edges: torch.LongTensor, |
|
attn_bias: torch.Tensor, |
|
in_degree: torch.LongTensor, |
|
out_degree: torch.LongTensor, |
|
spatial_pos: torch.LongTensor, |
|
attn_edge_type: torch.LongTensor, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
**unused, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_outputs = self.encoder( |
|
input_nodes, |
|
input_edges, |
|
attn_bias, |
|
in_degree, |
|
out_degree, |
|
spatial_pos, |
|
attn_edge_type, |
|
return_dict=True, |
|
) |
|
outputs, hidden_states = encoder_outputs["last_hidden_state"], encoder_outputs["hidden_states"] |
|
|
|
head_outputs = self.classifier(outputs) |
|
logits = head_outputs[:, 0, :].contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
mask = ~torch.isnan(labels) |
|
|
|
if self.num_classes == 1: |
|
loss_fct = MSELoss() |
|
loss = loss_fct(logits[mask].squeeze(), labels[mask].squeeze().float()) |
|
elif self.num_classes > 1 and len(labels.shape) == 1: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits[mask].view(-1, self.num_classes), labels[mask].view(-1)) |
|
else: |
|
loss_fct = BCEWithLogitsLoss(reduction="sum") |
|
loss = loss_fct(logits[mask], labels[mask]) |
|
|
|
if not return_dict: |
|
return tuple(x for x in [loss, logits, hidden_states] if x is not None) |
|
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states, attentions=None) |