--- library_name: transformers license: apache-2.0 language: - ja - en base_model: - Qwen/Qwen2.5-Math-7B-Instruct pipeline_tag: text-generation datasets: - openai/gsm8k --- # Qwen2.5-Math-7B-Instruct-jp-EZO_OREO > [!Warning] >
> > 🚨 Qwen2.5-Math-7B-Instruct-jp-EZO_OREO mainly supports solving Japanese and English and Chinese math problems through CoT and TIR. We do not recommend using this series of models for other tasks. > >
![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/2nt1zhQt4hbjmbvoZOpgA.png) ### 🤗 Hugging Face Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "AXCXEPT/Qwen2.5-Math-7B-Instruct-jp-EZO_OREO" device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Find the value of $x$ that satisfies the equation $4x+5 = 6x+7$." # CoT(CoTをさせる場合はこちら) messages = [ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{}."}, {"role": "user", "content": prompt} ] # TIR(TIR:Toolを使用させる場合はこちら ※こちらの方がベンチマーク性能は高い) messages = [ {"role": "system", "content": "Please integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ```