File size: 3,158 Bytes
f5fd9e6
 
fde22d4
 
 
 
 
 
 
 
 
973ecc0
5e2674f
 
fde22d4
 
5e2674f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: afl-3.0
datasets:
- tweet_eval
- sentiment140
- mteb/tweet_sentiment_extraction
- yelp_review_full
- amazon_polarity
language:
- en
metrics:
- accuracy
- sparse_val accuracy
- sparse_val categorical accuracy
library_name: transformers
pipeline_tag: text-classification
tags:
- textclassisification
- roberta
- robertabase
- sentimentanalysis
- nlp
- tweetanalysis
- tweet
- analysis
- sentiment
- positive
- newsanalysis
---

---
  <b>BYRD'S I - ROBERTA BASED TWEET/REVIEW/TEXT ANALYSIS</b>
---

This is ro<b>BERT</b>a-base model fine tuned on 8 datasets with ~20 M tweets this model is suitable for english while can do a fine job on other languages.

<b>Git Repo:</b><a href = "https://github.com/Caffeine-Coders/Sentiment-Analysis-Project"> SENTIMENTANALYSIS-PROJECT</a>

<b>Demo:</b><a href = "https://byrdi.netlify.app/"> BYRD'S I</a>

<b>labels: </b> 
 0 -> Negative; 
 1 -> Neutral; 
 2 -> Positive;
 
<b>Model Metrics</b><br/>
<b>Accuracy: </b> ~96% <br/>
<b>Sparse Categorical Accuracy: </b> 0.9597 <br/>
<b>Loss: </b> 0.1144 <br/>
<b>val_loss -- [onLast_train] : </b> 0.1482 <br/>
<b>Note: </b> 
Due to dataset discrepencies of Neutral data we published another model <a href = "https://huggingface.co./AK776161/birdseye_roberta-base-18">
Byrd's I only positive_negative model</a> to find only neutral data and have used 
<b>AdaBoot</b> method to get the accurate output. 
# Example of Classification:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from transformers import TFAutoModelForSequenceClassification
import pandas as pd
import numpy as np
import tensorflow

# model 0
tokenizer = AutoTokenizer.from_pretrained("AK776161/birdseye_roberta-base-18", use_fast = True)
model = AutoModelForSequenceClassification.from_pretrained("AK776161/birdseye_roberta-base-18", from_tf=True)
# model1 
tokenizer1 = AutoTokenizer.from_pretrained("AK776161/birdseye_roberta-base-tweet-eval", use_fast = True)
model1 = AutoModelForSequenceClassification.from_pretrained("AK776161/birdseye_roberta-base-tweet-eval",from_tf=True)

#-----------------------Adaboot technique---------------------------
def nparraymeancalc(arr1, arr2):
  returner = []
  for i in range(0,len(arr1)):
    if(arr1[i][1] < -7):
      arr1[i][1] = 0
    returner.append(np.mean([arr1[i],arr2[i]], axis = 0))
    
  return np.array(returner)

def predictions(tokenizedtext):
  output1 = model(**tokenizedtext)
  output2 = model1(**tokenizedtext)

  logits1 = output1.logits
  logits1 = logits1.detach().numpy()

  logits2 = output2.logits
  logits2 = logits2.detach().numpy()
  
  # print(logits1, logits2)
  predictionresult = nparraymeancalc(logits1,logits2)

  return np.array(predictionresult)

def labelassign(predictionresult):
  labels = []
  for i in predictionresult:
    label_id = i.argmax()
    labels.append(label_id)
  return labels

tokenizeddata = tokenizer("----YOUR_TEXT---", return_tensors = 'pt', padding = True, truncation = True)
result = predictions(tokenizeddata)

print(labelassign(result))
```
Output for "I LOVE YOU":
```
1) Positive: 0.994
2) Negative: 0.000
3) Neutral: 0.006
```